The lung microbiome regulates brain autoimmunity


  • Olsson, T., Barcellos, L. F. & Alfredsson, L. Interactions between genetic, way of life and environmental danger components for a number of sclerosis. Nat. Rev. Neurol. 13, 25–36 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Odoardi, F. et al. T cells change into licensed within the lung to enter the central nervous system. Nature 488, 675–679 (2012).

    ADS 
    CAS 

    Google Scholar 

  • O’Dwyer, D. N., Dickson, R. P. & Moore, B. B. The lung microbiome, immunity, and the pathogenesis of persistent lung illness. J. Immunol. 196, 4839–4847 (2016).

    PubMed 

    Google Scholar 

  • Jin, C. et al. Commensal microbiota promote lung most cancers growth through γδ T cells. Cell 176, 998–1013 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yokote, H. et al. NKT cell-dependent amelioration of a mouse mannequin of a number of sclerosis by altering intestine flora. Am. J. Pathol. 173, 1714–1723 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ochoa-Repáraz, J. et al. Position of intestine commensal microflora within the growth of experimental autoimmune encephalomyelitis. J. Immunol. 183, 6041–6050 (2009).

    PubMed 

    Google Scholar 

  • Berer, Ok. et al. Commensal microbiota and myelin autoantigen cooperate to set off autoimmune demyelination. Nature 479, 538–541 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rothhammer, V. et al. Kind I interferons and microbial metabolites of tryptophan modulate astrocyte exercise and central nervous system irritation through the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miyauchi, E. et al. Intestine microorganisms act collectively to exacerbate irritation in spinal cords. Nature 585, 102–106 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Flügel, A., Willem, M., Berkowicz, T. & Wekerle, H. Gene switch into CD4+ T lymphocytes: inexperienced fluorescent protein-engineered, encephalitogenic T cells illuminate mind autoimmune responses. Nat. Med. 5, 843–847 (1999).

    PubMed 

    Google Scholar 

  • Lodygin, D. et al. β-Synuclein-reactive T cells induce autoimmune CNS gray matter degeneration. Nature 566, 503–508 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bartholomäus, I. et al. Effector T cell interactions with meningeal vascular constructions in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009).

    ADS 
    PubMed 

    Google Scholar 

  • Kivisäkk, P. et al. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells throughout experimental autoimmune encephalomyelitis. Ann. Neurol. 65, 457–469 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lodygin, D. et al. A mix of fluorescent NFAT and H2B sensors uncovers dynamics of T cell activation in actual time throughout CNS autoimmunity. Nat. Med. 19, 784–790 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Starossom, S. C. et al. Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 37, 249–263 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawakami, N. et al. The activation standing of neuroantigen-specific T cells within the goal organ determines the medical consequence of autoimmune encephalomyelitis. J. Exp. Med. 199, 185–197 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Odoardi, F. et al. Prompt impact of soluble antigen on effector T cells in peripheral immune organs throughout immunotherapy of autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 104, 920–925 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heppner, F. L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 11, 146–152 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Hanisch, U. Ok. & Kettenmann, H. Microglia: lively sensor and versatile effector cells within the regular and pathologic mind. Nat. Neurosci. 10, 1387–1394 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Rock, R. B. et al. Transcriptional response of human microglial cells to interferon-γ. Genes Immun. 6, 712–719 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Popovic, N. et al. Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann. Neurol. 51, 215–223 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Elmore, M. R. et al. Colony-stimulating issue 1 receptor signaling is important for microglia viability, unmasking a microglia progenitor cell within the grownup mind. Neuron 82, 380–397 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prinz, M. et al. Distinct and nonredundant in vivo features of IFNAR on myeloid cells restrict autoimmunity within the central nervous system. Immunity 28, 675–686 (2008).

    CAS 

    Google Scholar 

  • Khorooshi, R. et al. Induction of endogenous kind I interferon throughout the central nervous system performs a protecting position in experimental autoimmune encephalomyelitis. Acta Neuropathol. 130, 107–118 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McNab, F., Mayer-Barber, Ok., Sher, A., Wack, A. & O’Garra, A. Kind I interferons in infectious illness. Nat. Rev. Immunol. 15, 87–103 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bradley, Ok. C. et al. Microbiota-driven tonic interferon indicators in lung stromal cells defend from influenza virus an infection. Cell Rep. 28, 245–256 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • d’Hennezel, E., Abubucker, S., Murphy, L. O. & Cullen, T. W. Whole lipopolysaccharide from the human intestine microbiome silences toll-like receptor signaling. mSystems 2, e00046-17 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, D. et al. Dysregulated lung commensal micro organism drive interleukin-17B manufacturing to advertise pulmonary fibrosis by way of their outer membrane vesicles. Immunity 50, 692–706 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Bhor, V. M., Thomas, C. J., Surolia, N. & Surolia, A. Polymyxin B: an ode to an outdated antidote for endotoxic shock. Mol. Biosyst. 1, 213–222 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Vargas-Caraveo, A. et al. Lipopolysaccharide enters the rat mind by a lipoprotein-mediated transport mechanism in physiological circumstances. Sci. Rep. 7, 13113 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sandiego, C. M. et al. Imaging strong microglial activation after lipopolysaccharide administration in people with PET. Proc. Natl Acad. Sci. USA 112, 12468–12473 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dickson, R. P., Erb-Downward, J. R., Martinez, F. J. & Huffnagle, G. B. The microbiome and the respiratory tract. Annu. Rev. Physiol 78, 481–504 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Belkaid, Y. & Hand, T. W. Position of the microbiota in immunity and irritation. Cell 157, 121–141 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Erny, D. et al. Host microbiota continuously management maturation and performance of microglia within the CNS. Nat. Neurosci. 18, 965–977 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Braniste, V. et al. The intestine microbiota influences blood–mind barrier permeability in mice. Sci. Transl. Med. 6, 263ra158 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. An intestinal commensal symbiosis issue controls neuroinflammation through TLR2-mediated CD39 signalling. Nat. Commun. 5, 4432 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Luu, M. et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Commun. 10, 760 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sonner, J. Ok. et al. Dietary tryptophan hyperlinks encephalogenicity of autoreactive T cells with intestine microbial ecology. Nat. Commun. 10, 4877 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jakimovski, D., Kolb, C., Ramanathan, M., Zivadinov, R. & Weinstock-Guttman, B. Interferon β for a number of sclerosis. Chilly Spring Harb. Perspect. Med. 8, a032003 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, B., Chang, E. Y. & Cheng, G. The kind I IFN induction pathway constrains Th17-mediated autoimmune irritation in mice. J. Clin. Make investments. 118, 1680–1690 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bauer, H., Horowitz, R. E., Levenson, S. M. & Popper, H. The response of the lymphatic tissue to the microbial flora. Research on germfree mice. Am. J. Pathol. 42, 471–483 (1963).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, Ok., McCoy, Ok. D. & Macpherson, A. J. Use of axenic animals in finding out the difference of mammals to their commensal intestinal microbiota. Semin. Immunol. 19, 59–69 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Kennedy, E. A., King, Ok. Y. & Baldridge, M. T. Mouse microbiota fashions: evaluating germ-free mice and antibiotics remedy as instruments for modifying intestine micro organism. Entrance. Physiol. 9, 1534 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wypych, T. P., Wickramasinghe, L. C. & Marsland, B. J. The affect of the microbiome on respiratory well being. Nat. Immunol. 20, 1279–1290 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Balmer, M. L. et al. The liver might act as a firewall mediating mutualism between the host and its intestine commensal microbiota. Sci. Transl. Med. 6, 237ra266 (2014).

    Google Scholar 

  • Määttä, J. A., Coffey, E. T., Hermonen, J. A., Salmi, A. A. & Hinkkanen, A. E. Detection of myelin primary protein isoforms by natural focus. Biochem. Biophys. Res. Commun. 238, 498–502 (1997).

    PubMed 

    Google Scholar 

  • Murray, C. et al. Interdependent and impartial roles of kind I interferons and IL-6 in innate immune, neuroinflammatory and illness behaviour responses to systemic poly I:C. Mind Behav. Immun. 48, 274–286 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rittirsch, D. et al. Acute lung damage induced by lipopolysaccharide is impartial of complement activation. J. Immunol. 180, 7664–7672 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Klindworth, A. et al. Analysis of basic 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based range research. Nucleic Acids Res. 41, e1 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • von Hoyningen-Huene, A. J. E. et al. Bacterial succession alongside a sediment porewater gradient at Lake Neusiedl in Austria. Sci. Knowledge 6, 163 (2019).

    Google Scholar 

  • Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a flexible open supply software for metagenomics. PeerJ 4, e2584 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yilmaz, P. et al. The SILVA and “All-species Residing Tree Mission (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database undertaking: improved information processing and web-based instruments. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, L. et al. GMPR: a sturdy normalization technique for zero-inflated depend information with utility to microbiome sequencing information. PeerJ 6, e4600 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersen, Ok. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: an R package deal to analyse and visualise 16S rRNA amplicon information. Preprint at https://doi.org/10.1101/299537 (2018).

  • Wickham, H. ggplot2: Elegant Graphics for Knowledge Evaluation (Springer, 2016).

  • Schläger, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • Cabeza, R. et al. An RNA sequencing transcriptome evaluation reveals novel insights into molecular facets of the nitrate affect on the nodule exercise of Medicago truncatula. Plant Physiol. 164, 400–411 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative evaluation of enormous gene lists utilizing DAVID bioinformatics sources. Nat. Protoc. 4, 44–57 (2009).

    CAS 

    Google Scholar 

  • Doorn, Ok. J. et al. Mind region-specific gene expression profiles in freshly remoted rat microglia. Entrance. Cell. Neurosci. 9, 84 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Klinkert, W. E. et al. TNF-α receptor fusion protein prevents experimental auto-immune encephalomyelitis and demyelination in Lewis rats: an outline. J. Neuroimmunol. 72, 163–168 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Leave a Reply