Petroff, E., Hessels, J. W. T. & Lorimer, D. R. Quick radio bursts. Astron. Astrophys. Rev. 27, 4 (2019).
Google Scholar
Spitler, L. G. et al. A repeating quick radio burst. Nature 531, 202–205 (2016).
Google Scholar
The CHIME/FRB Collaboration. The primary CHIME/FRB quick radio burst catalog. Astrophys. J. Suppl. Ser. 257, 59 (2021).
Google Scholar
Margalit, B. & Metzger, B. D. A concordance image of FRB 121102 as a flaring magnetar embedded in a magnetized ion–electron wind nebula. Astrophys. J. Lett. 868, 4 (2018).
Google Scholar
The CHIME/FRB Collaboration. A shiny millisecond-duration radio burst from a Galactic magnetar. Nature 587, 54–58 (2020).
Google Scholar
Bhardwaj, M. et al. A close-by repeating quick radio burst within the course of M81. Astrophys. J. Lett. 910, 18 (2021).
Google Scholar
Margalit, B., Berger, E. & Metzger, B. D. Quick radio bursts from magnetars born in binary neutron star mergers and accretion induced collapse. Astrophys. J. 886, 110 (2019).
Google Scholar
Freedman, W. L. et al. The Hubble Area Telescope Extragalactic Distance Scale Key Venture. I. The invention of cepheids and a brand new distance to M81. Astrophys. J. 427, 628–655 (1994).
Google Scholar
Lazarus, P. et al. Prospects for high-precision pulsar timing with the brand new Effelsberg PSRIX backend. Mon. Not. R. Astron. Soc. 458, 868–880 (2016).
Google Scholar
Nimmo, Ok. et al. Burst timescales and luminosities hyperlink younger pulsars and quick radio bursts. Nat. Astron., within the press (2022).
Keimpema, A. et al. The SFXC software program correlator for very lengthy baseline interferometry: algorithms and implementation. Exp. Astron. 39, 259–279 (2015).
Google Scholar
Charlot, P. et al. The third realization of the Worldwide Celestial Reference Body by very lengthy baseline interferometry. Astron. Astrophys. 644, A159 (2020).
Google Scholar
Perelmuter, J.-M., Brodie, J. P. & Huchra, J. P. Kinematics and metallicity of 25 globular clusters in M81. Astron. J. 110, 620–627 (1995).
Google Scholar
Perelmuter, J.-M. & Racine, R. The globular cluster system of M81. Astron. J. 109, 1055–1070 (1995).
Google Scholar
Moffat, A. F. J. A theoretical investigation of focal stellar pictures within the photographic emulsion and software to photographic photometry. Astron. Astrophys. 3, 455–461 (1969).
Google Scholar
Gaia Collaboration. The Gaia mission. Astron. Astrophys. 595, A1 (2016).
Gaia Collaboration. Gaia Early Information Launch 3: abstract of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).
Harris, W. E., Harris, G. L. H. & Alessi, M. A catalog of globular cluster methods: what determines the dimensions of a galaxy’s globular cluster inhabitants? Astrophys. J. 772, 82 (2013).
Google Scholar
Marcote, B. et al. A repeating quick radio burst supply localized to a close-by spiral galaxy. Nature 577, 190–194 (2020).
Google Scholar
Marcote, B. et al. The repeating quick radio burst FRB 121102 as seen on milliarcsecond angular scales. Astrophys. J. Lett. 834, L8 (2017).
Google Scholar
Ajello, M. et al. The fourth catalog of lively galactic nuclei detected by the Fermi Giant Space Telescope. Astrophys. J. 892, 105 (2020).
Google Scholar
Abdo, A. A. et al. Detection of gamma-ray emission from the starburst galaxies M82 and NGC 253 with the Giant Space Telescope on Fermi. Astrophys. J. Lett. 709, L152–L157 (2010).
Google Scholar
Hut, P. et al. Binaries in globular clusters. Publ. Astron. Soc. Pac. 104, 981 (1992).
Google Scholar
Pooley, D. et al. Dynamical formation of shut binary methods in globular clusters. Astrophys. J. Lett. 591, L131–L134 (2003).
Google Scholar
Verbunt, F. Binary evolution and neutron stars in globular clusters. In New Horizons in Globular Cluster Astronomy: Proceedings of a Convention Held at Università di Padova, Padova, Italy 24–28 June, 2002 (eds Piotto, G. et al.) 245–254 (Astronomical Society of the Pacific, 2003).
Wang, B. & Liu, D. The formation of neutron star methods by accretion-induced collapse in white-dwarf binaries. Res. Astron. Astrophys. 20, 135 (2020).
Google Scholar
Giacomazzo, B. & Perna, R. Formation of steady magnetars from binary neutron star mergers. Astrophys. J. Lett. 771, L26 (2013).
Google Scholar
Schwab, J., Quataert, E. & Kasen, D. The evolution and destiny of super-Chandrasekhar mass white dwarf merger remnants. Mon. Not. R. Astron. Soc. 463, 3461–3475 (2016).
Google Scholar
Zhong, S.-Q. & Dai, Z.-G. Magnetars from neutron star–white dwarf mergers: software to quick radio bursts. Astrophys. J. 893, 9 (2020).
Google Scholar
Prager, B. J. et al. Utilizing long-term millisecond pulsar timing to acquire bodily traits of the bulge globular cluster Terzan 5. Astrophys. J. 845, 148 (2017).
Google Scholar
Mottez, F. & Zarka, P. Radio emissions from pulsar companions: a refutable clarification for galactic transients and quick radio bursts. Astron. Astrophys. 569, A86 (2014).
Google Scholar
Mottez, F., Zarka, P. & Voisin, G. Repeating quick radio bursts attributable to small our bodies orbiting a pulsar or a magnetar. Astron. Astrophys. 644, A145 (2020).
Google Scholar
Ablimit, I. & Li, X.-D. Formation of binary millisecond pulsars by accretion-induced collapse of white dwarfs beneath wind-driven evolution. Astrophys. J. 800, 98 (2015).
Google Scholar
Ye, C. S., Kremer, Ok., Chatterjee, S., Rodriguez, C. L. & Rasio, F. A. Millisecond pulsars and black holes in globular clusters. Astrophys. J. 877, 122 (2019).
Google Scholar
Heinke, C. O. et al. Evaluation of the quiescent low-mass X-ray binary inhabitants in Galactic globular clusters. Astrophys. J. 598, 501–515 (2003).
Google Scholar
Sridhar, N. et al. Periodic quick radio bursts from luminous X-ray binaries. Astrophys. J. 917, 13 (2021).
Google Scholar
Kaaret, P., Feng, H. & Roberts, T. P. Ultraluminous X-ray sources. Annu. Rev. Astron. Astrophys. 55, 303–341 (2017).
Google Scholar
Bachetti, M. et al. An ultraluminous X-ray supply powered by an accreting neutron star. Nature 514, 202–204 (2014).
Google Scholar
Webb, N. et al. Radio detections throughout two state transitions of the intermediate-mass black gap HLX-1. Science 337, 554–556 (2012).
Google Scholar
Dage, Ok. C. et al. X-ray spectroscopy of newly recognized ULXs related to M87’s globular cluster inhabitants. Mon. Not. R. Astron. Soc. 497, 596–608 (2020).
Google Scholar
Chatterjee, S. et al. A direct localization of a quick radio burst and its host. Nature 541, 58–61 (2017).
Google Scholar
Ravi, V. et al. The host galaxy and protracted radio counterpart of FRB 20201124A. Preprint at https://arxiv.org/abs/2106.09710 (2021).
Bassa, C. G. et al. FRB 121102 is coincident with a star-forming area in its host galaxy. Astrophys. J. Lett. 843, L8 (2017).
Google Scholar
Tendulkar, S. P. et al. The 60 laptop setting of FRB 20180916B. Astrophys. J. Lett. 908, L12 (2021).
Google Scholar
Piro, L. et al. The quick radio burst FRB 20201124A in a star-forming area: constraints to the progenitor and multiwavelength counterparts. Astron. Astrophys. 656, L15 (2021).
Google Scholar
Fong, W.-f et al. Chronicling the host galaxy properties of the outstanding repeating FRB 20201124A. Astrophys. J. Lett. 919, L23 (2021).
Google Scholar
Remazeilles, M., Dickinson, C., Banday, A. J., Bigot-Sazy, M. A. & Ghosh, T. An improved source-subtracted and destriped 408-MHz all-sky map. Mon. Not. R. Astron. Soc. 451, 4311–4327 (2015).
Google Scholar
Reich, P. & Reich, W. Spectral index variations of the galactic radio continuum emission : proof for a galactic wind. Astron. Astrophys. 196, 211–226 (1988).
Google Scholar
Mather, J. C. et al. Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument. Astrophys. J. 420, 439–444 (1994).
Google Scholar
Whitney, A. et al. VLBI information interchange format (VDIF). In Sixth Worldwide VLBI Service for Geodesy and Astronomy. Proceedings from the 2010 Normal Assembly (eds Navarro, R. et al.) 192–196 (NASA, 2010).
Whitney, A. The Mark 5B VLBI information system. In Proc. seventh European VLBI Community Symp. on VLBI Scientific Analysis and Know-how (eds Bachiller, R et al.) 251–252 (EVN, 2004).
Kirsten, F. et al. Detection of two shiny radio bursts from magnetar SGR 1935 + 2154. Nat. Astron. 5, 414–422 (2021).
Google Scholar
Agarwal, D., Aggarwal, Ok., Burke-Spolaor, S., Lorimer, D. R. & Garver-Daniels, N. FETCH: a deep-learning based mostly classifier for quick transient classification. Mon. Not. R. Astron. Soc. 497, 1661–1674 (2020).
Google Scholar
Ransom, S. M. New Search Strategies for Binary Pulsars. PhD thesis, Harvard Univ. 2001).
Ransom, S. PRESTO: PulsaR Exploration and Search Toolkit. Astrophysics Supply Code Library http://ascl.web/1107.017 (2011).
Michilli, D. et al. Single-pulse classifier for the LOFAR Tied-Array All-sky Survey. Mon. Not. R. Astron. Soc. 480, 3457–3467 (2018).
Google Scholar
Greisen, E. W. AIPS, the VLA, and the VLBA. In Data Dealing with in Astronomy – Historic Vistas (ed. Heck, A.) 109–125 (Kluwer Educational, 2003).
Shepherd, M. C., Pearson, T. J. & Taylor, G. B. DIFMAP: an interactive program for synthesis imaging. Bull. Am. Astron. Soc. 26, 987–989 (1994).
Google Scholar
Regulation, C. J. et al. realfast: real-time, commensal quick transient surveys with the Very Giant Array. Astrophys. J. Suppl. Ser. 236, 8 (2018).
Google Scholar
Polisensky, E. et al. Exploring the transient radio sky with VLITE: early outcomes. Astrophys. J. 832, 60 (2016).
Google Scholar
Clarke, T. E. et al. Commensal low frequency observing on the NRAO VLA: VLITE standing and future plans. In Proc. SPIE 9906: Floor-based and Airborne Telescopes VI (eds Corridor, H. J. et al.) 99065B (SPIE, 2016).
Bethapudi, S. et al. The primary quick radio burst detected with VLITE-Quick. Res. Not. Am. Astron. Soc. 5, 46 (2021).
Google Scholar
Cotton, W. D. Obit: a improvement setting for astronomical algorithms. Publ. Astron. Soc. Pac. 120, 439–448 (2008).
Google Scholar
Offringa, A. R. et al. WSCLEAN: an implementation of a quick, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 444, 606–619 (2014).
Google Scholar
Miyazaki, S. et al. Hyper Suprime-Cam. In Proc. SPIE 8446: Floor-based and Airborne Instrumentation for Astronomy IV (eds McLean, I. S. et al.) 84460Z (SPIE, 2012).
Bosch, J. et al. The Hyper Suprime-Cam software program pipeline. Publ. Astron. Soc. Pac. 70, S5 (2018).
Flewelling, H. A. et al. The Pan-STARRS1 database and information merchandise. Astrophys. J. Suppl. Ser. 251, 7 (2020).
Google Scholar
Garmire, G. P. et al. Superior CCD imaging spectrometer (ACIS) instrument on the Chandra X-ray Observatory. In Proc. SPIE 4851: X-ray and Gamma-ray Telescopes and Devices for Astronomy (eds Truemper, J. E. & Tananbaum, H. D.) 28–44 (SPIE, 2003).
Fruscione, A. et al. CIAO: Chandra’s information evaluation system. In Proc. SPIE 6270: Observatory Operations: Methods, Processes, and Techniques (eds Silva, D. R. & Doxsey, R. E.) 62701V (2006).
Kraft, R. P., Burrows, D. N. & Nousek, J. A. Willpower of confidence limits for experiments with low numbers of counts. Astrophys. J. 374, 344–355 (1991).
Google Scholar
Ballet, J., Burnett, T. H., Digel, S. W. & Lott, B. Fermi Giant Space Telescope Fourth Supply Catalog. Preprint at https://arxiv.org/abs/2005.11208 (2020).
Abdo, A. A. et al. A inhabitants of gamma-ray emitting globular clusters seen with the Fermi Giant Space Telescope. Astron. Astrophys. 524, A75 (2010).
Hessels, J. W. T. et al. FRB 121102 bursts present complicated time-frequency construction. Astrophys. J. Lett. 876, L23 (2019).
Google Scholar
Kirsten, F., Vlemmings, W., Campbell, R. M., Kramer, M. & Chatterjee, S. Revisiting the delivery places of pulsars B1929+10, B2020+28, and B2021+51. Astron. Astrophys. 577, A111 (2015).
Google Scholar
Condon, J. J. et al. Resolving the radio supply background: deeper understanding by confusion. Astrophys. J. 758, 23 (2012).
Google Scholar
Beck, R. et al. PS1-STRM: neural community supply classification and photometric redshift catalogue for PS1 3π DR1. Mon. Not. R. Astron. Soc. 500, 1633–1644 (2021).
Google Scholar
Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The noticed offset distribution of gamma-ray bursts from their host galaxies: a strong clue to the character of the progenitors. Astrophys. J. 123, 1111–1148 (2002).
Leja, J., Johnson, B. D., Conroy, C., van Dokkum, P. G. & Byler, N. Deriving bodily properties from broadband photometry with Prospector: description of the mannequin and an illustration of its accuracy utilizing 129 galaxies within the native Universe. Astrophys. J. 837, 170 (2017).
Google Scholar
Johnson, B. D., Leja, J. L., Conroy, C. & Speagle, J. S. Prospector: stellar inhabitants inference from spectra and SEDs. Astrophysics Supply Code Library http://ascl.web/1905.025 (2019).
Alam, S. et al. The eleventh and twelfth information releases of the Sloan Digital Sky Survey: closing information from SDSS-III. Astrophys. J. Suppl. Ser. 219, 12 (2015).
Google Scholar
Simha, V. et al. Parametrising star formation histories. Preprint at https://arxiv.org/abs/1404.0402 (2014).
Carnall, A. C. et al. How one can measure galaxy star formation histories. I. Parametric fashions. Astrophys. J. 873, 44 (2019).
Google Scholar
Draine, B. T. & Li, A. Infrared emission from interstellar mud. IV. The silicate–graphite–PAH mannequin within the post-Spitzer period. Astrophys. J. 657, 810–837 (2007).
Google Scholar
Bertelli, G., Bressan, A., Chiosi, C., Fagotto, F. & Nasi, E. Theoretical isochrones from fashions with new radiative opacities. Astron. Astrophys. Suppl. Ser. 106, 275–302 (1994).
Google Scholar
Ma, J. et al. Steel abundance properties of M81 globular cluster system. Publ. Astron. Soc. Pac. 119, 1085–1092 (2007).
Google Scholar
Kremer, Ok. et al. White dwarf subsystems in core-collapsed globular clusters. Astrophys. J. 917, 28 (2021).
Google Scholar
Ye, C. S. et al. On the speed of neutron star binary mergers from globular clusters. Astrophys. J. Lett. 888, L10 (2020).
Google Scholar
Boyles, J. et al. Younger radio pulsars in Galactic globular clusters. Astrophys. J. 742, 51 (2011).
Google Scholar
Hessels, J. et al. Pulsars in globular clusters with the SKA. In Advancing Astrophysics with the Sq. Kilometre Array (AASKA14) 47 (2015).
Lyne, A. G., Manchester, R. N. & D’Amico, N. PSR B1745-20 and younger pulsars in globular clusters. Astrophys. J. Lett. 460, L41 (1996).
Google Scholar
Macquart, J. P. et al. A census of baryons within the Universe from localized quick radio bursts. Nature 581, 391–395 (2020).
Google Scholar
Cordes, J. M. & Lazio, T. J. W. NE2001.I. A brand new mannequin for the Galactic distribution of free electrons and its fluctuations. Preprint at https://arxiv.org/abs/astro-ph/0207156 (2002).
Yao, J. M., Manchester, R. N. & Wang, N. A brand new electron-density mannequin for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).
Google Scholar
Keating, L. C. & Pen, U.-L. Exploring the dispersion measure of the Milky Manner halo. Mon. Not. R. Astron. Soc. 496, L106–L110 (2020).
Google Scholar
Yamasaki, S. & Totani, T. The Galactic halo contribution to the dispersion measure of extragalactic quick radio bursts. Astrophys. J. 888, 105 (2020).
Google Scholar
Prochaska, J. X. & Zheng, Y. Probing Galactic haloes with quick radio bursts. Mon. Not. R. Astron. Soc. 485, 648–665 (2019).
Google Scholar
Hutschenreuter, S. et al. The Galactic Faraday rotation sky 2020. Astron. Astrophys. 657, A43 (2022).
The CHIME/FRB Collaboration. CHIME/FRB discovery of eight new repeating quick radio burst sources. Astrophys. J. Lett. 885, L24 (2019).
Google Scholar
Michilli, D. et al. An excessive magneto-ionic setting related to the quick radio burst supply FRB 121102. Nature 553, 182–185 (2018).
Google Scholar
Hobbs, G., Manchester, R., Teoh, A. & Hobbs, M. The ATNF Pulsar Catalog. In IAU Symp. No. 218: Younger Neutron Stars and Their Environments (eds Camilo, F. & Gaensler, B. M.) 139–140 (Astronomical Society of the Pacific, 2004).
Karachentsev, I. D. The native group and different neighboring galaxy teams. Astron. J. 129, 178–188 (2005).
Google Scholar
Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of mud infrared emission to be used in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).
Google Scholar