Structural basis for mismatch surveillance by CRISPR–Cas9


  • Jinek, M. et al. RNA-programmed genome modifying in human cells. eLife 2, e00471 (2013).

    Article 

    Google Scholar 

  • Cong, L. et al. Multiplex genome engineering utilizing CRISPR/Cas methods. Science 339, 819–823 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, Y. et al. Excessive-frequency off-target mutagenesis induced by CRISPR–Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

    CAS 
    Article 

    Google Scholar 

  • Doudna, J. A. The promise and problem of therapeutic genome modifying. Nature 578, 229–236 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Liu, M. et al. Engineered CRISPR/Cas9 enzymes enhance discrimination by slowing DNA cleavage to permit launch of off-target DNA. Nat. Commun. 11, 3576 (2020).

    ADS 
    Article 

    Google Scholar 

  • Kim, D., Luk, Ok., Wolfe, S. A. & Kim, J. S. Evaluating and enhancing goal specificity of gene-editing nucleases and deaminases. Annu. Rev. Biochem. 88, 191–220 (2019).

    CAS 
    Article 

    Google Scholar 

  • Slaymaker, I. M. & Gaudelli, N. M. Engineering Cas9 for human genome modifying. Curr. Opin. Struct. Biol. 69, 86–98 (2021).

    CAS 
    Article 

    Google Scholar 

  • Kleinstiver, B. P. et al. Excessive-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target results. Nature 529, 490–495 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Chen, J. S. et al. Enhanced proofreading governs CRISPR–Cas9 concentrating on accuracy. Nature 550, 407–410 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kim, N. et al. Prediction of the sequence-specific cleavage exercise of Cas9 variants. Nat. Biotechnol. 38, 1328–1336 (2020).

    CAS 
    Article 

    Google Scholar 

  • Sternberg, S. H., Lafrance, B., Kaplan, M. & Doudna, J. A. Conformational management of DNA goal cleavage by CRISPR–Cas9. Nature 527, 110–113 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Singh, D. et al. Mechanisms of improved specificity of engineered Cas9s revealed by single-molecule FRET evaluation. Nat. Struct. Mol. Biol. 25, 347–354 (2018).

    CAS 
    Article 

    Google Scholar 

  • Jiang, F. et al. Constructions of a CRISPR–Cas9 R-loop complicated primed for DNA cleavage. Science 351, 867–871 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Anders, C., Niewoehner, O., Duerst, A. & Jinek, M. Structural foundation of PAM-dependent goal DNA recognition by the Cas9 endonuclease. Nature 513, 569–573 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ran, F. A. et al. Genome engineering utilizing the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    CAS 
    Article 

    Google Scholar 

  • Dagdas, Y. S., Chen, J. S., Sternberg, S. H., Doudna, J. A. & Yildiz, A. A conformational checkpoint between DNA binding and cleavage by CRISPR–Cas9. Sci. Adv. 3, eaao0027 (2017).

    Article 

    Google Scholar 

  • Zhu, X. et al. Cryo-EM buildings reveal coordinated area motions that govern DNA cleavage by Cas9. Nat. Struct. Mol. Biol. 26, 679–685 (2019).

    CAS 
    Article 

    Google Scholar 

  • Cofsky, J. C., Soczek, Ok. M., Knott, G. J., Nogales, E. & Doudna, J. A. CRISPR–Cas9 bends and twists DNA to learn its sequence. Preprint at https://doi.org/10.1101/2021.09.06.459219 (2021).

  • Pacesa, M. & Jinek, M. Mechanism of R-loop formation and conformational activation of Cas9. Preprint at https://doi.org/10.1101/2021.09.16.460614 (2021).

  • Jones, S. Ok. et al. Massively parallel kinetic profiling of pure and engineered CRISPR nucleases. Nat. Biotechnol. 39, 84–93 (2021).

    Article 

    Google Scholar 

  • Palermo, G. Construction and dynamics of the CRISPR–Cas9 catalytic complicated. J. Chem. Inf. Mannequin. 59, 2394–2406 (2019).

    CAS 
    Article 

    Google Scholar 

  • Zhang, Y. et al. Catalytic-state construction and engineering of Streptococcus thermophilus Cas9. Nat. Catal. 3, 813–823 (2020).

    CAS 
    Article 

    Google Scholar 

  • Jinek, M. et al. Constructions of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997 (2014).

    Article 

    Google Scholar 

  • Steitz, T. A. & Steitz, J. A. A normal two-metal-ion mechanism for catalytic RNA. Proc. Natl Acad. Sci. USA. 90, 6498–6502 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Casalino, L., Nierzwicki, Ł., Jinek, M. & Palermo, G. Catalytic mechanism of non-target DNA cleavage in CRISPR–Cas9 revealed by ab initio molecular dynamics. ACS Catal. 10, 13596–13605 (2020).

    CAS 
    Article 

    Google Scholar 

  • Aldag, P. et al. Probing the soundness of the SpCas9–DNA complicated after cleavage. Nucleic Acids Res. 49, 12411–12421 (2021).

    CAS 
    Article 

    Google Scholar 

  • Gong, S., Yu, H. H., Johnson, Ok. A. & Taylor, D. W. DNA unwinding is the first determinant of CRISPR–Cas9 exercise. Cell Rep. 22, 359–371 (2018).

    CAS 
    Article 

    Google Scholar 

  • Solar, W. et al. Constructions of Neisseria meningitidis Cas9 complexes in catalytically poised and anti-CRISPR-inhibited states. Mol. Cell 76, 938–952 (2019).

    CAS 
    Article 

    Google Scholar 

  • Nishimasu, H. et al. Crystal construction of Cas9 in complicated with information RNA and goal DNA. Cell 156, 935–949 (2014).

    CAS 
    Article 

    Google Scholar 

  • Tsai, S. Q. et al. GUIDE-seq permits genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–198 (2015).

    CAS 
    Article 

    Google Scholar 

  • Kuscu, C., Arslan, S., Singh, R., Thorpe, J. & Adli, M. Genome-wide evaluation reveals traits of off-target websites certain by the Cas9 endonuclease. Nat. Biotechnol. 32, 677–683 (2014).

    CAS 
    Article 

    Google Scholar 

  • Dangerfield, T. L., Huang, N. Z. & Johnson, Ok. A. Excessive throughput quantification of quick nucleic acid samples by capillary electrophoresis with automated information processing. Anal. Biochem. 629, 114239 (2021).

    CAS 
    Article 

    Google Scholar 

  • Johnson, Ok. A. Kinetic Evaluation for the New Enzymology (KinTek, 2019).

  • Mastronarde, D. N. Automated electron microscope tomography utilizing sturdy prediction of specimen actions. J. Struct. Biol. 152, 36–51 (2005).

    Article 

    Google Scholar 

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for fast unsupervised cryo-EM construction dedication. Nat. Strategies 14, 290–296 (2017).

    CAS 
    Article 

    Google Scholar 

  • Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Strategies 17, 1214–1221 (2020).

    CAS 
    Article 

    Google Scholar 

  • Pettersen, E. F. et al. UCSF ChimeraX: construction visualization for researchers, educators, and builders. Protein Sci. 30, 70–82 (2021).

    CAS 
    Article 

    Google Scholar 

  • Kidmose, R. T. et al. Namdinator—automated molecular dynamics versatile becoming of structural fashions into cryo-EM and crystallography experimental maps. IUCrJ 6, 526–531 (2019).

    CAS 
    Article 

    Google Scholar 

  • Croll, T. I. ISOLDE: a bodily reasonable atmosphere for mannequin constructing into low-resolution electron-density maps. Acta Crystallogr. D 74, 519–530 (2018).

    CAS 
    Article 

    Google Scholar 

  • Pausch, P. et al. DNA interference states of the hypercompact CRISPR–CasΦ effector. Nat. Struct. Mol. Biol. 28, 652–661 (2021).

    CAS 
    Article 

    Google Scholar 

  • Huang, X. et al. Structural foundation for 2 metal-ion catalysis of DNA cleavage by Cas12i2. Nat. Commun. 11, 5241 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Nishimasu, H. et al. Crystal construction of Staphylococcus aureus Cas9. Cell 162, 1113–1126 (2015).

    CAS 
    Article 

    Google Scholar 

  • Leave a Reply