Overcoming universal restrictions on metal selectivity by protein design


  • Waldron, Okay. J., Rutherford, J. C., Ford, D. & Robinson, N. J. Metalloproteins and metallic sensing. Nature 460, 823–830 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Grey, H. B., Stiefel, E. I., Valentine, J. S. & Bertini, I. Organic Inorganic Chemistry: Construction and Reactivity (College Science Books, 2007).

  • Waldron, Okay. J. & Robinson, N. J. How do bacterial cells make sure that metalloproteins get the proper metallic? Nat. Rev. Microbiol. 7, 25–35 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Dudev, T. & Lim, C. Competitors amongst metallic ions for protein binding websites: determinants of metallic ion selectivity in proteins. Chem. Rev. 114, 538–556 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Frausto da Silva, J. J. R. & Williams, R. J. P. The Organic Chemistry of the Components (Oxford College Press, 2001).

  • Kisgeropoulos, E. C. et al. Key structural motifs stability metallic binding and oxidative reactivity in a heterobimetallic Mn/Fe protein. J. Am. Chem. Soc. 142, 5338–5354 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grāve, Okay., Griese, J. J., Berggren, G., Bennett, M. D. & Högbom, M. The Bacillus anthracis class Ib ribonucleotide reductase subunit NrdF intrinsically selects manganese over iron. J. Biol. Inorg. Chem. 25, 571–582 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Reyes-Caballero, H., Campanello, G. C. & Giedroc, D. P. Metalloregulatory proteins: metallic selectivity and allosteric switching. Biophys. Chem. 156, 103–114 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • O’Halloran, T. V. & Culotta, V. C. Metallochaperones, an intracellular shuttle service for metallic ions. J. Biol. Chem. 275, 25057–25060 (2000).

    PubMed 

    Google Scholar 

  • Tottey, S. et al. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 455, 1138–1142 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lombardi, A., Pirro, F., Maglio, O., Chino, M. & DeGrado, W. F. De novo design of four-helix bundle metalloproteins: one scaffold, various reactivities. Acc. Chem. Res. 52, 1148–1159 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, Y., Yeung, N., Sieracki, N. & Marshall, N. M. Design of practical metalloproteins. Nature 460, 855–862 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, F. et al. Protein design: towards practical metalloenzymes. Chem. Rev. 114, 3495–3578 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwizer, F. et al. Synthetic metalloenzymes: response scope and optimization methods. Chem. Rev. 118, 142–231 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Churchfield, L. A. & Tezcan, F. A. Design and development of practical supramolecular metalloprotein assemblies. Acc. Chem. Res. 52, 345–355 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Faiella, M. et al. A synthetic di-iron oxo-protein with phenol oxidase exercise. Nat. Chem. Biol. 5, 882–884 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Zastrow, M. L., Peacock, F. A., Stuckey, J. A. & Pecoraro, V. L. Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nat. Chem. 4, 118–123 (2012).

    CAS 

    Google Scholar 

  • Studer, S. et al. Evolution of a extremely energetic and enantiospecific metalloenzyme from quick peptides. Science 362, 1285–1288 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Khare, S. D. et al. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nat. Chem. Biol. 8, 294–300 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yeung, N. et al. Rational design of a structural and practical nitric oxide reductase. Nature 462, 1079–1082 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Track, W. J. & Tezcan, F. A. A designed supramolecular protein meeting with in vivo enzymatic exercise. Science 346, 1525–1528 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Churchfield, L. A., Medina-Morales, A., Brodin, J. D., Perez, A. & Tezcan, F. A. De novo design of an allosteric metalloprotein meeting with strained disulfide bonds. J. Am. Chem. Soc. 138, 13163–13166 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, L. et al. A protein engineered to bind uranyl selectively and with femtomolar affinity. Nat. Chem. 6, 236–241 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Wegner, S. V., Boyaci, H., Chen, H., Jensen, M. P. & He, C. Engineering a uranyl-specific binding protein from NikR. Angew. Chem. Int. Ed. Engl. 48, 2339–2341 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Brodin, J. D. et al. Evolution of metallic selectivity in templated protein interfaces. J. Am. Chem. Soc. 132, 8610–8617 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guffy, S. L., Der, B. S. & Kuhlman, B. Probing the minimal determinants of zinc binding with computational protein design. Protein Eng. Des. Sel. 29, 327–338 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akcapinar, G. B. & Sezerman, O. U. Computational approaches for de novo design and redesign of metal-binding websites on proteins. Biosci. Rep. 37, BSR20160179 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Byrd, J. & Winge, D. R. Cooperative cluster formation in metallothionein. Arch. Biochem. Biophys. 250, 233–237 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • Halling, D. B., Liebeskind, B. J., Corridor, A. W. & Aldrich, R. W. Conserved properties of particular person Ca2+-binding websites in calmodulin. Proc. Natl Acad. Sci. USA 113, E1216–E1225 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zygiel, E. M. & Nolan, E. M. Transition metallic sequestration by the host-defense protein calprotectin. Annu. Rev. Biochem. 87, 621–643 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rittle, J., Subject, M. J., Inexperienced, M. T. & Tezcan, F. A. An environment friendly, step-economical technique for the design of practical metalloproteins. Nat. Chem. 11, 434–441 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faraone-Mennella, J., Tezcan, F. A., Grey, H. B. & Winkler, J. R. Stability and folding kinetics of structurally characterised cytochrome cb562. Biochemistry 45, 10504–10511 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Choi, T. S., Lee, H. J., Han, J. Y., Lim, M. H. & Kim, H. I. Molecular insights into human serum albumin as a receptor of amyloid-β within the extracellular area. J. Am. Chem. Soc. 139, 15437–15445 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Burgot, J.-L. Ionic Equilibria in Analytical Chemistry (Springer, 2012).

  • Osman, D. et al. Bacterial sensors outline intracellular free energies for proper enzyme metalation. Nat. Chem. Biol. 15, 241–249 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Younger, T. R. et al. Calculating metalation in cells reveals CobW acquires CoII for vitamin B12 biosynthesis whereas associated proteins want ZnII. Nat. Commun. 12, 1195 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jeschek, M. et al. Directed evolution of synthetic metalloenzymes for in vivo metathesis. Nature 537, 661–665 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Thompson, A. N. et al. Mechanism of potassium-channel selectivity revealed by Na+ and Li+ binding websites inside the KcsA pore. Nat. Struct. Mol. Biol. 16, 1317–1324 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Capdevila, D. A., Braymer, J. J., Edmonds, Okay. A., Wu, H. & Giedroc, D. P. Entropy redistribution controls allostery in a metalloregulatory protein. Proc. Natl Acad. Sci. USA 114, 4424–4429 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tokuriki, N. & Tawfik, D. S. Protein dynamism and evolvability. Science 324, 203–207 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–339 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Papaleo, E. et al. The function of protein loops and linkers in conformational dynamics and allostery. Chem. Rev. 116, 6391–6423 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Arslan, E., Schulz, H., Zufferey, R., Künzler, P. & Thöny-Meyer, L. Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb3 oxidase in Escherichia coli. Biochem. Biophys. Res. Commun. 251, 744–747 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Bailey, J. B., Subramanian, R. H., Churchfield, L. A. & Tezcan, F. A. in Peptide, Protein and Enzyme Design: Strategies in Enzymology Vol. 580 (ed. Pecoraro, V. L.) 223–250 (Educational Press, 2016).

  • Martel, A., Liu, P., Weiss, T. M., Niebuhr, M. & Tsuruta, H. An built-in high-throughput knowledge acquisition system for organic answer X-ray scattering research. J. Synchrotron Radiat. 19, 431–434 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manalastas-Cantos, Okay. et al. ATSAS 3.0: expanded performance and new instruments for small-angle scattering knowledge evaluation. J. Appl. Crystallogr. 54, 343–355 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Svergun, D., Barberato, C. & Koch, M. H. J. CRYSOL—a program to judge X-ray answer scattering of organic macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995).

    CAS 

    Google Scholar 

  • Collaborative Computational Challenge. The CCP4 suite: applications for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Google Scholar 

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Okay. Options and growth of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction answer. Acta Crystallogr. D 66, 213–221 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • The PyMOL Molecular Graphics System v.1.8 (Schrödinger, 2015).

  • Schuck, P. Dimension-distribution evaluation of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manoil, C. & Beckwith, J. A genetic strategy to analyzing membrane protein topology. Science 233, 1403–1408 (1986).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dapprich, S., Komáromi, I., Byun, Okay. S., Morokuma, Okay. & Frisch, M. J. A brand new ONIOM implementation in Gaussian98. Half I. The calculation of energies, gradients, vibrational frequencies and electrical discipline derivatives. J. Mol. Struct. THEOCHEM 461–462, 1–21 (1999).

    Google Scholar 

  • Vreven, T., Morokuma, Okay., Farkas, Ö., Schlegel, H. B. & Frisch, M. J. Geometry optimization with QM/MM, ONIOM, and different mixed strategies. I. Microiterations and constraints. J. Comput. Chem. 24, 760–769 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Tao, P. et al. Matrix metalloproteinase 2 inhibition: mixed quantum mechanics and molecular mechanics research of the inhibition mechanism of (4-phenoxyphenylsulfonyl)methylthiirane and its oxirane analogue. Biochemistry 48, 9839–9847 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Becke, A. D. Density‐practical thermochemistry. III. The function of tangible alternate. J. Chem. Phys. 98, 5648–5652 (1993).

    ADS 
    CAS 

    Google Scholar 

  • Lee, C., Yang, W. & Parr, R. G. Improvement of the Colle–Salvetti correlation-energy formulation right into a practical of the electron density. Phys. Rev. B 37, 785–789 (1988).

    ADS 
    CAS 

    Google Scholar 

  • Hariharan, P. C. & Pople, J. A. The impact of d-functions on molecular orbital energies for hydrocarbons. Chem. Phys. Lett. 16, 217–219 (1972).

    ADS 
    CAS 

    Google Scholar 

  • Rassolov, V. A., Pople, J. A., Ratner, M. A. & Windus, T. L. 6-31G* foundation set for atoms Okay by Zn. J. Chem. Phys. 109, 1223–1229 (1998).

    ADS 
    CAS 

    Google Scholar 

  • Rassolov, V. A., Ratner, M. A., Pople, J. A., Redfern, P. C. & Curtiss, L. A. 6-31G* foundation set for third-row atoms. J. Comput. Chem. 22, 976–984 (2001).

    CAS 

    Google Scholar 

  • Freindorf, M., Shao, Y., Furlani, T. R. & Kong, J. Lennard–Jones parameters for the mixed QM/MM methodology utilizing the B3LYP/6-31G*/AMBER potential. J. Comput. Chem. 26, 1270–1278 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Case, D. A. et al. The Amber biomolecular simulation applications. J. Comput. Chem. 26, 1668–1688 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bakowies, D. & Thiel, W. Hybrid fashions for mixed quantum mechanical and molecular mechanical approaches. J. Phys. Chem. 100, 10580–10594 (1996).

    CAS 

    Google Scholar 

  • Weiner, S. J., Singh, U. C. & Kollman, P. A. Simulation of formamide hydrolysis by hydroxide ion within the fuel part and in aqueous answer. J. Am. Chem. Soc. 107, 2219–2229 (1985).

    CAS 

    Google Scholar 

  • Kakkis, A., Gagnon, D., Esselborn, J., Britt, R. D. & Tezcan, F. A. Steel-templated design of chemically switchable protein assemblies with high-affinity coordination websites. Angew. Chem. Int. Ed. Engl. 59, 21940–21944 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kocyła, A., Pomorski, A. & Krężel, A. Molar absorption coefficients and stability constants of metallic complexes of 4-(2-pyridylazo)resorcinol (PAR): revisiting widespread chelating probe for the research of metalloproteins. J. Inorg. Biochem. 152, 82–92 (2015).

    PubMed 

    Google Scholar 

  • Kuzmič, P. Program DYNAFIT for the evaluation of enzyme kinetic knowledge: utility to HIV proteinase. Anal. Biochem. 237, 260–273 (1996).

    PubMed 

    Google Scholar 

  • Stoll, S. & Schweiger, A. EasySpin, a complete software program package deal for spectral simulation and evaluation in EPR. J. Magn. Reson. 178, 42–55 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Smilgies, D.-M. & Folta-Stogniew, E. Molecular weight-gyration radius relation of globular proteins: a comparability of sunshine scattering, small-angle X-ray scattering and structure-based knowledge. J. Appl. Crystallogr. 48, 1604–1606 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leave a Reply