Waldron, Okay. J., Rutherford, J. C., Ford, D. & Robinson, N. J. Metalloproteins and metallic sensing. Nature 460, 823–830 (2009).
Google Scholar
Grey, H. B., Stiefel, E. I., Valentine, J. S. & Bertini, I. Organic Inorganic Chemistry: Construction and Reactivity (College Science Books, 2007).
Waldron, Okay. J. & Robinson, N. J. How do bacterial cells make sure that metalloproteins get the proper metallic? Nat. Rev. Microbiol. 7, 25–35 (2009).
Google Scholar
Dudev, T. & Lim, C. Competitors amongst metallic ions for protein binding websites: determinants of metallic ion selectivity in proteins. Chem. Rev. 114, 538–556 (2014).
Google Scholar
Frausto da Silva, J. J. R. & Williams, R. J. P. The Organic Chemistry of the Components (Oxford College Press, 2001).
Kisgeropoulos, E. C. et al. Key structural motifs stability metallic binding and oxidative reactivity in a heterobimetallic Mn/Fe protein. J. Am. Chem. Soc. 142, 5338–5354 (2020).
Google Scholar
Grāve, Okay., Griese, J. J., Berggren, G., Bennett, M. D. & Högbom, M. The Bacillus anthracis class Ib ribonucleotide reductase subunit NrdF intrinsically selects manganese over iron. J. Biol. Inorg. Chem. 25, 571–582 (2020).
Google Scholar
Reyes-Caballero, H., Campanello, G. C. & Giedroc, D. P. Metalloregulatory proteins: metallic selectivity and allosteric switching. Biophys. Chem. 156, 103–114 (2011).
Google Scholar
O’Halloran, T. V. & Culotta, V. C. Metallochaperones, an intracellular shuttle service for metallic ions. J. Biol. Chem. 275, 25057–25060 (2000).
Google Scholar
Tottey, S. et al. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 455, 1138–1142 (2008).
Google Scholar
Lombardi, A., Pirro, F., Maglio, O., Chino, M. & DeGrado, W. F. De novo design of four-helix bundle metalloproteins: one scaffold, various reactivities. Acc. Chem. Res. 52, 1148–1159 (2019).
Google Scholar
Lu, Y., Yeung, N., Sieracki, N. & Marshall, N. M. Design of practical metalloproteins. Nature 460, 855–862 (2009).
Google Scholar
Yu, F. et al. Protein design: towards practical metalloenzymes. Chem. Rev. 114, 3495–3578 (2014).
Google Scholar
Schwizer, F. et al. Synthetic metalloenzymes: response scope and optimization methods. Chem. Rev. 118, 142–231 (2018).
Google Scholar
Churchfield, L. A. & Tezcan, F. A. Design and development of practical supramolecular metalloprotein assemblies. Acc. Chem. Res. 52, 345–355 (2019).
Google Scholar
Faiella, M. et al. A synthetic di-iron oxo-protein with phenol oxidase exercise. Nat. Chem. Biol. 5, 882–884 (2009).
Google Scholar
Zastrow, M. L., Peacock, F. A., Stuckey, J. A. & Pecoraro, V. L. Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nat. Chem. 4, 118–123 (2012).
Google Scholar
Studer, S. et al. Evolution of a extremely energetic and enantiospecific metalloenzyme from quick peptides. Science 362, 1285–1288 (2018).
Google Scholar
Khare, S. D. et al. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nat. Chem. Biol. 8, 294–300 (2012).
Google Scholar
Yeung, N. et al. Rational design of a structural and practical nitric oxide reductase. Nature 462, 1079–1082 (2009).
Google Scholar
Track, W. J. & Tezcan, F. A. A designed supramolecular protein meeting with in vivo enzymatic exercise. Science 346, 1525–1528 (2014).
Google Scholar
Churchfield, L. A., Medina-Morales, A., Brodin, J. D., Perez, A. & Tezcan, F. A. De novo design of an allosteric metalloprotein meeting with strained disulfide bonds. J. Am. Chem. Soc. 138, 13163–13166 (2016).
Google Scholar
Zhou, L. et al. A protein engineered to bind uranyl selectively and with femtomolar affinity. Nat. Chem. 6, 236–241 (2014).
Google Scholar
Wegner, S. V., Boyaci, H., Chen, H., Jensen, M. P. & He, C. Engineering a uranyl-specific binding protein from NikR. Angew. Chem. Int. Ed. Engl. 48, 2339–2341 (2009).
Google Scholar
Brodin, J. D. et al. Evolution of metallic selectivity in templated protein interfaces. J. Am. Chem. Soc. 132, 8610–8617 (2010).
Google Scholar
Guffy, S. L., Der, B. S. & Kuhlman, B. Probing the minimal determinants of zinc binding with computational protein design. Protein Eng. Des. Sel. 29, 327–338 (2016).
Google Scholar
Akcapinar, G. B. & Sezerman, O. U. Computational approaches for de novo design and redesign of metal-binding websites on proteins. Biosci. Rep. 37, BSR20160179 (2017).
Google Scholar
Byrd, J. & Winge, D. R. Cooperative cluster formation in metallothionein. Arch. Biochem. Biophys. 250, 233–237 (1986).
Google Scholar
Halling, D. B., Liebeskind, B. J., Corridor, A. W. & Aldrich, R. W. Conserved properties of particular person Ca2+-binding websites in calmodulin. Proc. Natl Acad. Sci. USA 113, E1216–E1225 (2016).
Google Scholar
Zygiel, E. M. & Nolan, E. M. Transition metallic sequestration by the host-defense protein calprotectin. Annu. Rev. Biochem. 87, 621–643 (2018).
Google Scholar
Rittle, J., Subject, M. J., Inexperienced, M. T. & Tezcan, F. A. An environment friendly, step-economical technique for the design of practical metalloproteins. Nat. Chem. 11, 434–441 (2019).
Google Scholar
Faraone-Mennella, J., Tezcan, F. A., Grey, H. B. & Winkler, J. R. Stability and folding kinetics of structurally characterised cytochrome c–b562. Biochemistry 45, 10504–10511 (2006).
Google Scholar
Choi, T. S., Lee, H. J., Han, J. Y., Lim, M. H. & Kim, H. I. Molecular insights into human serum albumin as a receptor of amyloid-β within the extracellular area. J. Am. Chem. Soc. 139, 15437–15445 (2017).
Google Scholar
Burgot, J.-L. Ionic Equilibria in Analytical Chemistry (Springer, 2012).
Osman, D. et al. Bacterial sensors outline intracellular free energies for proper enzyme metalation. Nat. Chem. Biol. 15, 241–249 (2019).
Google Scholar
Younger, T. R. et al. Calculating metalation in cells reveals CobW acquires CoII for vitamin B12 biosynthesis whereas associated proteins want ZnII. Nat. Commun. 12, 1195 (2021).
Google Scholar
Jeschek, M. et al. Directed evolution of synthetic metalloenzymes for in vivo metathesis. Nature 537, 661–665 (2016).
Google Scholar
Thompson, A. N. et al. Mechanism of potassium-channel selectivity revealed by Na+ and Li+ binding websites inside the KcsA pore. Nat. Struct. Mol. Biol. 16, 1317–1324 (2009).
Google Scholar
Capdevila, D. A., Braymer, J. J., Edmonds, Okay. A., Wu, H. & Giedroc, D. P. Entropy redistribution controls allostery in a metalloregulatory protein. Proc. Natl Acad. Sci. USA 114, 4424–4429 (2017).
Google Scholar
Tokuriki, N. & Tawfik, D. S. Protein dynamism and evolvability. Science 324, 203–207 (2009).
Google Scholar
Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–339 (2014).
Google Scholar
Papaleo, E. et al. The function of protein loops and linkers in conformational dynamics and allostery. Chem. Rev. 116, 6391–6423 (2016).
Google Scholar
Arslan, E., Schulz, H., Zufferey, R., Künzler, P. & Thöny-Meyer, L. Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb3 oxidase in Escherichia coli. Biochem. Biophys. Res. Commun. 251, 744–747 (1998).
Google Scholar
Bailey, J. B., Subramanian, R. H., Churchfield, L. A. & Tezcan, F. A. in Peptide, Protein and Enzyme Design: Strategies in Enzymology Vol. 580 (ed. Pecoraro, V. L.) 223–250 (Educational Press, 2016).
Martel, A., Liu, P., Weiss, T. M., Niebuhr, M. & Tsuruta, H. An built-in high-throughput knowledge acquisition system for organic answer X-ray scattering research. J. Synchrotron Radiat. 19, 431–434 (2012).
Google Scholar
Manalastas-Cantos, Okay. et al. ATSAS 3.0: expanded performance and new instruments for small-angle scattering knowledge evaluation. J. Appl. Crystallogr. 54, 343–355 (2021).
Google Scholar
Svergun, D., Barberato, C. & Koch, M. H. J. CRYSOL—a program to judge X-ray answer scattering of organic macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995).
Google Scholar
Collaborative Computational Challenge. The CCP4 suite: applications for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Okay. Options and growth of Coot. Acta Crystallogr. D 66, 486–501 (2010).
Google Scholar
Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction answer. Acta Crystallogr. D 66, 213–221 (2010).
Google Scholar
The PyMOL Molecular Graphics System v.1.8 (Schrödinger, 2015).
Schuck, P. Dimension-distribution evaluation of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).
Google Scholar
Manoil, C. & Beckwith, J. A genetic strategy to analyzing membrane protein topology. Science 233, 1403–1408 (1986).
Google Scholar
Dapprich, S., Komáromi, I., Byun, Okay. S., Morokuma, Okay. & Frisch, M. J. A brand new ONIOM implementation in Gaussian98. Half I. The calculation of energies, gradients, vibrational frequencies and electrical discipline derivatives. J. Mol. Struct. THEOCHEM 461–462, 1–21 (1999).
Vreven, T., Morokuma, Okay., Farkas, Ö., Schlegel, H. B. & Frisch, M. J. Geometry optimization with QM/MM, ONIOM, and different mixed strategies. I. Microiterations and constraints. J. Comput. Chem. 24, 760–769 (2003).
Google Scholar
Tao, P. et al. Matrix metalloproteinase 2 inhibition: mixed quantum mechanics and molecular mechanics research of the inhibition mechanism of (4-phenoxyphenylsulfonyl)methylthiirane and its oxirane analogue. Biochemistry 48, 9839–9847 (2009).
Google Scholar
Becke, A. D. Density‐practical thermochemistry. III. The function of tangible alternate. J. Chem. Phys. 98, 5648–5652 (1993).
Google Scholar
Lee, C., Yang, W. & Parr, R. G. Improvement of the Colle–Salvetti correlation-energy formulation right into a practical of the electron density. Phys. Rev. B 37, 785–789 (1988).
Google Scholar
Hariharan, P. C. & Pople, J. A. The impact of d-functions on molecular orbital energies for hydrocarbons. Chem. Phys. Lett. 16, 217–219 (1972).
Google Scholar
Rassolov, V. A., Pople, J. A., Ratner, M. A. & Windus, T. L. 6-31G* foundation set for atoms Okay by Zn. J. Chem. Phys. 109, 1223–1229 (1998).
Google Scholar
Rassolov, V. A., Ratner, M. A., Pople, J. A., Redfern, P. C. & Curtiss, L. A. 6-31G* foundation set for third-row atoms. J. Comput. Chem. 22, 976–984 (2001).
Google Scholar
Freindorf, M., Shao, Y., Furlani, T. R. & Kong, J. Lennard–Jones parameters for the mixed QM/MM methodology utilizing the B3LYP/6-31G*/AMBER potential. J. Comput. Chem. 26, 1270–1278 (2005).
Google Scholar
Case, D. A. et al. The Amber biomolecular simulation applications. J. Comput. Chem. 26, 1668–1688 (2005).
Google Scholar
Bakowies, D. & Thiel, W. Hybrid fashions for mixed quantum mechanical and molecular mechanical approaches. J. Phys. Chem. 100, 10580–10594 (1996).
Google Scholar
Weiner, S. J., Singh, U. C. & Kollman, P. A. Simulation of formamide hydrolysis by hydroxide ion within the fuel part and in aqueous answer. J. Am. Chem. Soc. 107, 2219–2229 (1985).
Google Scholar
Kakkis, A., Gagnon, D., Esselborn, J., Britt, R. D. & Tezcan, F. A. Steel-templated design of chemically switchable protein assemblies with high-affinity coordination websites. Angew. Chem. Int. Ed. Engl. 59, 21940–21944 (2020).
Google Scholar
Kocyła, A., Pomorski, A. & Krężel, A. Molar absorption coefficients and stability constants of metallic complexes of 4-(2-pyridylazo)resorcinol (PAR): revisiting widespread chelating probe for the research of metalloproteins. J. Inorg. Biochem. 152, 82–92 (2015).
Google Scholar
Kuzmič, P. Program DYNAFIT for the evaluation of enzyme kinetic knowledge: utility to HIV proteinase. Anal. Biochem. 237, 260–273 (1996).
Google Scholar
Stoll, S. & Schweiger, A. EasySpin, a complete software program package deal for spectral simulation and evaluation in EPR. J. Magn. Reson. 178, 42–55 (2006).
Google Scholar
Smilgies, D.-M. & Folta-Stogniew, E. Molecular weight-gyration radius relation of globular proteins: a comparability of sunshine scattering, small-angle X-ray scattering and structure-based knowledge. J. Appl. Crystallogr. 48, 1604–1606 (2015).
Google Scholar