A wet heterogeneous mantle creates a habitable world in the Hadean


  • Matsui, T. & Abe, Y. Evolution of an impact-induced ambiance and magma ocean on the accreting Earth. Nature 319, 303–305 (1986).

    ADS 
    CAS 

    Google Scholar 

  • Tonks, W. B. & Melosh, H. J. Magma ocean formation attributable to big impacts. J. Geophys. Res. 98, 5319–5333 (1993).

    ADS 

    Google Scholar 

  • Canup, R. M. & Asphaug, E. Origin of the Moon in an enormous influence close to the top of the Earth’s formation. Nature 412, 708–712 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Proof from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr in the past. Nature 409, 175–178 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Harrison, T. M. The Hadean crust: Proof from >4 Ga zircons. Annu. Rev. Earth Planet. Sci. 37, 479–505 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Sleep, N. H. & Zahnle, Okay. Carbon dioxide biking and implications for local weather on historical Earth. J. Geophys. Res. 106, 1373–1399 (2001).

    ADS 
    CAS 

    Google Scholar 

  • Kelley, D. S. et al. A serpentinite-hosted ecosystem: the Misplaced Metropolis Hydrothermal Area. Science 307, 1428–1434 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Proskurowski, G. et al. Abiogenic hydrocarbon manufacturing at Misplaced Metropolis hydrothermal discipline. Science 319, 604–607 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Klein, F., Grozeva, N. G. & Seewald, J. S. Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions. Proc. Natl Acad. Sci. 116, 17666–17672 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raymond, S. N., Schlichting, H. E., Hersant, F. & Selsis, F. Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus 226, 671–681 (2013).

    ADS 

    Google Scholar 

  • Krissansen-Totton, J., Arney, G. N. & Catling, D. C. Constraining the local weather and ocean pH of the early Earth with a geological carbon cycle mannequin. Proc. Natl Acad. Sci. 115, 4105–4110 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elkins-Tanton, L. T. Linked magma ocean solidification and atmospheric progress for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008).

    ADS 
    CAS 

    Google Scholar 

  • Lebrun, T. et al. Thermal evolution of an early magma ocean in interplay with the ambiance. J. Geophys. Res. Planet. 118, 1155–1176 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Hamano, Okay., Abe, Y. & Genda, H. Emergence of two sorts of terrestrial planet on solidification of magma ocean. Nature 497, 607–610 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Salvador, A. et al. The relative affect of H2O and CO2 on the primitive floor circumstances and evolution of rocky planets. J. Geophys. Res. Planet. 122, 1458–1486 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Bower, D. J. et al. Linking the evolution of terrestrial interiors and an early outgassed ambiance to astrophysical observations. Astron. Astrophys. 631, A103 (2019).

    CAS 

    Google Scholar 

  • Hirschmann, M. M. Magma ocean affect on early ambiance mass and composition. Earth Planet. Sci. Lett. 341–344, 48–57 (2012).

    ADS 

    Google Scholar 

  • Deng, J., Du, Z., Karki, B. B., Ghosh, D. B. & Lee, Okay. Okay. A magma ocean origin to divergent redox evolutions of rocky planetary our bodies and early atmospheres. Nat. Commun. 11, 2007 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abe, Y. Bodily state of the very early Earth. Lithos 30, 223–235 (1993).

    ADS 

    Google Scholar 

  • Catling, D. C. & Zahnle, Okay. J. The Archean ambiance. Sci. Adv. 6, eaax1420 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Solomatov, V. S. In Treatise on Geophysics. Quantity 9: Evolution of the Earth 1st edn (ed. Schubert G.) 91–119 (Elsevier, 2007).

  • Hier-Majumder, S. & Hirschmann, M. M. The origin of volatiles within the Earth’s mantle. Geochem. Geophys. Geosyst. 18, 3078–3092 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Kawamoto, T. & Holloway, J. R. Melting temperature and partial soften chemistry to H2O-saturated mantle peridotite to 11 gigapascals. Science 276, 240–243 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Katz, R. F., Spiegelman, M. & Langmuir, C. H. A brand new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4, 1073 (2003).

    ADS 

    Google Scholar 

  • Hirschmann, M. M. & Dasgupta, R. The H/C ratios of Earth’s near-surface and deep reservoirs, and penalties for deep Earth risky cycles. Chem. Geol. 262, 4–16 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Korenaga, J., Planavsky, N. J. & Evans, D. A. D. International water cycle and the coevolution of the Earth’s inside and floor surroundings. Philos. Trans. R. Soc. A 375, 20150393 (2017).

    ADS 

    Google Scholar 

  • Maurice, M. et al. Onset of solid-state mantle convection and mixing throughout magma ocean solidification. J. Geophys. Res. Planet. 122, 577–598 (2017).

    ADS 

    Google Scholar 

  • Miyazaki, Y. & Korenaga, J. On the timescale of magma ocean solidification and its chemical penalties: 2. Compositional differentiation below crystal accumulation and matrix compaction. J. Geophys. Res. Strong Earth 124, 3399–3419 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Clean, J. G. & Brooker, R. A. In Critiques in Mineralogy and Geochemistry. Quantity 30: Volatiles in Magmas (eds Carrol, M. R. & Holloway, J. R.) 157–186 (Mineralogical Society of America, 1994).

  • Abe, Y. In Evolution of the Earth and Planets (eds Takahashi, E. et al.) 41–54 (AGU, 1993).

  • Hirth, G. & Kohlstedt, D. L. Water within the oceanic higher mantle: implications for rheology, soften extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).

    ADS 
    CAS 

    Google Scholar 

  • Jain, C., Korenaga, J. & Karato, S.-i International evaluation of experimental knowledge on the rheology of olivine aggregates. J. Geophys. Res. Strong Earth 124, 310–334 (2019).

    ADS 

    Google Scholar 

  • Korenaga, J. Thermal evolution with a hydrating mantle and the initiation of plate tectonics within the early Earth. J. Geophys. Res. 116, B12403 (2011).

    ADS 

    Google Scholar 

  • Korenaga, J. Plate tectonics and floor surroundings: position of the oceanic higher mantle. Earth Sci. Rev. 205, 103185 (2020).

    Google Scholar 

  • Zahnle, Okay. et al. Emergence of a liveable planet. Area Sci. Rev. 129, 35–78 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Korenaga, J. Energetics of mantle convection and the destiny of fossil warmth. Geophys. Res. Lett. 30, 1437 (2003).

    ADS 

    Google Scholar 

  • Bradley, D. C. Passive margins via earth historical past. Earth Sci. Rev. 91, 1–26 (2008).

    ADS 

    Google Scholar 

  • Herzberg, C., Condie, Okay. & Korenaga, J. Thermal historical past of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Pehrsson, S. J., Eglington, B. M., Evans, D. A., Huston, D. & Reddy, S. M. Metallogeny and its hyperlink to orogenic fashion through the Nuna supercontinent cycle. Geol. Soc. Spec. Publ. 424, 83–94 (2016).

    ADS 

    Google Scholar 

  • Plesa, A.-C., Tosi, N. & Breuer, D. Can a fractionally crystallized magma ocean clarify the thermo-chemical evolution of Mars? Earth Planet. Sci. Lett. 403, 225–235 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W. & Kress, V. C. III The pMELTS: A revision of MELTS for improved calculation of part relations and main component partitioning associated to partial melting of the mantle to three GPa. Geochem. Geophys. Geosyst. 3, 1–35 (2002).

    Google Scholar 

  • Gualda, G. A., Ghiorso, M. S., Lemons, R. V. & Carley, T. L. Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic programs. J. Petrol. 53, 875–890 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Korenaga, J. In Archean Geodynamics and Environments (eds Benn, Okay. et al.) 7–32 (AGU, 2006).

  • Davies, G. F. On the emergence of plate tectonics. Geology 20, 963–966 (1992).

    ADS 

    Google Scholar 

  • Korenaga, J. Scaling of plate tectonic convection with pseudoplastic rheology. J. Geophys. Res. 115, B11405 (2010).

    ADS 

    Google Scholar 

  • Diamond, L. W. & Akinfiev, N. N. Solubility of CO2 in water from −1.5 to 100 °C and from 0.1 to 100 MPa: analysis of literature knowledge and thermodynamic modelling. Fluid Part Equilib. 208, 265–290 (2003).

    CAS 

    Google Scholar 

  • Alt, J. C. & Teagle, D. A. The uptake of carbon throughout alteration of ocean crust. Geochim. Cosmochim. Acta 63, 1527–1535 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Sleep, N. H., Meibom, A., Fridriksson, T., Coleman, R. G. & Chicken, D. Okay. H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl Acad. Sci. 101, 12818–12823 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schulte, M., Blake, D., Hoehler, T. & McCollom, T. Serpentinization and its implications for all times on the early Earth and Mars. Astrobiology 6, 364–376 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lambert, J. B., Gurusamy-Thangavelu, S. A. & Ma, Okay. The silicate-mediated formose response: bottom-up synthesis of sugar silicates. Science 327, 984–986 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Davies, G. F. Gravitational depletion of the early Earth’s higher mantle and the viability of early plate tectonics. Earth Planet. Sci. Lett. 243, 376–382 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Zahnle, Okay. J., Kasting, J. F. & Pollack, J. B. Evolution of a steam ambiance throughout Earth’s accretion. Icarus 74, 62–97 (1988).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dullien, F. A. L. Porous Media: Fluid Transport and Pore Construction 2nd edn (Educational, 1992).

  • Zahnle, Okay. J., Lupu, R., Dobrovolskis, A. & Sleep, N. H. The tethered Moon. Earth Planet. Sci. Lett. 427, 74–82 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Trønnes, R. G. & Frost, D. J. Peridotite melting and mineral-melt partitioning of main and minor parts at 22–24.5 GPa. Earth Planet. Sci. Lett. 197, 117–131 (2002).

    ADS 

    Google Scholar 

  • Corgne, A., Liebske, C., Wooden, B. J., Rubie, D. C. & Frost, D. J. Silicate perovskite-melt partitioning of hint parts and geochemical signature of a deep perovskitic reservoir. Geochim. Cosmochim. Acta 69, 485–496 (2005).

    ADS 
    CAS 

    Google Scholar 

  • Parsons, B. Causes and penalties of the relation between space and age of the ocean flooring. J. Geophys. Res. 87, 289–302 (1982).

    ADS 

    Google Scholar 

  • Zhang, G., Mei, S. & Track, M. Impact of water on the dislocation creep of enstatite aggregates at 300 MPa. Geophys. Res. Lett. 47, e2019GL085895 (2020).

    ADS 

    Google Scholar 

  • Aubaud, C., Hauri, E. H. & Hirschmann, M. M. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys. Res. Lett. 31, L20611 (2004).

    ADS 

    Google Scholar 

  • de Capitani, C. & Petrakakis, Okay. The computation of equilibrium assemblage diagrams with Theriak/Domino software program. Am. Mineral. 95, 1006–1016 (2010).

    ADS 

    Google Scholar 

  • McKenzie, D. The technology and compaction of partially molten rock. J. Petrol. 25, 713–765 (1984).

    ADS 
    CAS 

    Google Scholar 

  • Christensen, U. R. Thermal evolution fashions for the Earth. J. Geophys. Res. 90, 2995–3007 (1985).

    ADS 
    CAS 

    Google Scholar 

  • Korenaga, J. Thermal cracking and the deep hydration of oceanic lithosphere: A key to the technology of plate tectonics? J. Geophys. Res. 112, B05408 (2007).

    ADS 

    Google Scholar 

  • Tackley, P. J. In Treatise on Geophysics: Quantity 7: Mantle Dynamics 2nd edn (ed. Schubert G.) 521–585 (Elsevier, 2015).

  • Nakajima, S., Hayashi, Y.-Y. & Abe, Y. A research on the “runaway greenhouse impact” with a one-dimensional radiative–convective equilibrium mannequin. J. Atmos. Sci. 49, 2256–2266 (1992).

    ADS 

    Google Scholar 

  • Johnson, S. S., Mischna, M. A., Grove, T. L. & Zuber, M. T. Sulfur-induced greenhouse warming on early Mars. J. Geophys. Res. Planet. 113, E08005 (2008).

    ADS 

    Google Scholar 

  • Abe, Y. & Matsui, T. The formation of an impact-generated H2O ambiance and its implications for the early thermal historical past of the Earth. J. Geophys. Res. Suppl. 90, C545–C559 (1985).

    ADS 
    CAS 

    Google Scholar 

  • Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s inside. Earth Planet. Sci. Lett. 298, 1–13 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, principally comes up. Proc. Natl Acad. Sci. 112, E3997–E4006 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sleep, N. H., Zahnle, Okay. & Neuhoff, P. S. Initiation of clement floor circumstances on the earliest Earth. Proc. Natl Acad. Sci. 98, 3666–3672 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peterson, M. N. A. Calcite: charges of dissolution in a vertical profile within the central Pacific. Science 154, 1542–1544 (1966).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Andersson, A. J. In Treatise on Geochemistry. Quantity 8: The Oceans and Marine Geochemistry 2nd edn (eds Holland, H. D. & Turekian, Okay.) 519–542 (Elsevier, 2014).

  • Kelemen, P. B. et al. Charges and mechanisms of mineral carbonation in peridotite: pure processes and recipes for enhanced, in situ CO2 seize and storage. Annu. Rev. Earth Planet. Sci. 39, 545–576 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Syracuse, E. M., van Keken, P. E. & Abers, G. A. The worldwide vary of subduction zone thermal fashions. Phys. Earth Planet. Inter. 183, 73–90 (2010).

    ADS 

    Google Scholar 

  • Dasgupta, R., Hirschmann, M. M. & Withers, A. C. Deep international biking of carbon constrained by the solidus of anhydrous, carbonated eclogite below higher mantle circumstances. Earth Planet. Sci. Lett. 227, 73–85 (2004).

    ADS 
    CAS 

    Google Scholar 

  • Korenaga, J. On the extent of mantle hydration attributable to plate bending. Earth Planet. Sci. Lett. 457, 1–9 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Miller, N. C., Lizarralde, D., Collins, J. A., Holbrook, W. S. & Van Avendonk, H. J. Restricted mantle hydration by bending faults on the center America trench. J. Geophys. Res. Strong Earth 126, e2020JB020982 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Miyazaki, Y. & Korenaga, J. Results of chemistry on vertical mud movement in early protoplanetary disks. Astrophys. J. 849, 41 (2017).

    ADS 

    Google Scholar 

  • Wirth, E. A. & Korenaga, J. Small-scale convection within the subduction zone mantle wedge. Earth Planet. Sci. Lett. 357–358, 111–118 (2012).

    ADS 

    Google Scholar 

  • Lyubetskaya, T. & Korenaga, J. Chemical composition of Earth’s primitive mantle and its variance: 1. Technique and outcomes. J. Geophys. Res. 112, B03211 (2007).

    ADS 

    Google Scholar 

  • Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J.-G. The imply composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Leave a Reply