Matsui, T. & Abe, Y. Evolution of an impact-induced ambiance and magma ocean on the accreting Earth. Nature 319, 303–305 (1986).
Google Scholar
Tonks, W. B. & Melosh, H. J. Magma ocean formation attributable to big impacts. J. Geophys. Res. 98, 5319–5333 (1993).
Google Scholar
Canup, R. M. & Asphaug, E. Origin of the Moon in an enormous influence close to the top of the Earth’s formation. Nature 412, 708–712 (2001).
Google Scholar
Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Proof from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr in the past. Nature 409, 175–178 (2001).
Google Scholar
Harrison, T. M. The Hadean crust: Proof from >4 Ga zircons. Annu. Rev. Earth Planet. Sci. 37, 479–505 (2009).
Google Scholar
Sleep, N. H. & Zahnle, Okay. Carbon dioxide biking and implications for local weather on historical Earth. J. Geophys. Res. 106, 1373–1399 (2001).
Google Scholar
Kelley, D. S. et al. A serpentinite-hosted ecosystem: the Misplaced Metropolis Hydrothermal Area. Science 307, 1428–1434 (2005).
Google Scholar
Proskurowski, G. et al. Abiogenic hydrocarbon manufacturing at Misplaced Metropolis hydrothermal discipline. Science 319, 604–607 (2008).
Google Scholar
Klein, F., Grozeva, N. G. & Seewald, J. S. Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions. Proc. Natl Acad. Sci. 116, 17666–17672 (2019).
Google Scholar
Raymond, S. N., Schlichting, H. E., Hersant, F. & Selsis, F. Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus 226, 671–681 (2013).
Google Scholar
Krissansen-Totton, J., Arney, G. N. & Catling, D. C. Constraining the local weather and ocean pH of the early Earth with a geological carbon cycle mannequin. Proc. Natl Acad. Sci. 115, 4105–4110 (2018).
Google Scholar
Elkins-Tanton, L. T. Linked magma ocean solidification and atmospheric progress for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008).
Google Scholar
Lebrun, T. et al. Thermal evolution of an early magma ocean in interplay with the ambiance. J. Geophys. Res. Planet. 118, 1155–1176 (2013).
Google Scholar
Hamano, Okay., Abe, Y. & Genda, H. Emergence of two sorts of terrestrial planet on solidification of magma ocean. Nature 497, 607–610 (2013).
Google Scholar
Salvador, A. et al. The relative affect of H2O and CO2 on the primitive floor circumstances and evolution of rocky planets. J. Geophys. Res. Planet. 122, 1458–1486 (2017).
Google Scholar
Bower, D. J. et al. Linking the evolution of terrestrial interiors and an early outgassed ambiance to astrophysical observations. Astron. Astrophys. 631, A103 (2019).
Google Scholar
Hirschmann, M. M. Magma ocean affect on early ambiance mass and composition. Earth Planet. Sci. Lett. 341–344, 48–57 (2012).
Google Scholar
Deng, J., Du, Z., Karki, B. B., Ghosh, D. B. & Lee, Okay. Okay. A magma ocean origin to divergent redox evolutions of rocky planetary our bodies and early atmospheres. Nat. Commun. 11, 2007 (2020).
Google Scholar
Abe, Y. Bodily state of the very early Earth. Lithos 30, 223–235 (1993).
Google Scholar
Catling, D. C. & Zahnle, Okay. J. The Archean ambiance. Sci. Adv. 6, eaax1420 (2020).
Google Scholar
Solomatov, V. S. In Treatise on Geophysics. Quantity 9: Evolution of the Earth 1st edn (ed. Schubert G.) 91–119 (Elsevier, 2007).
Hier-Majumder, S. & Hirschmann, M. M. The origin of volatiles within the Earth’s mantle. Geochem. Geophys. Geosyst. 18, 3078–3092 (2017).
Google Scholar
Kawamoto, T. & Holloway, J. R. Melting temperature and partial soften chemistry to H2O-saturated mantle peridotite to 11 gigapascals. Science 276, 240–243 (1997).
Google Scholar
Katz, R. F., Spiegelman, M. & Langmuir, C. H. A brand new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4, 1073 (2003).
Google Scholar
Hirschmann, M. M. & Dasgupta, R. The H/C ratios of Earth’s near-surface and deep reservoirs, and penalties for deep Earth risky cycles. Chem. Geol. 262, 4–16 (2009).
Google Scholar
Korenaga, J., Planavsky, N. J. & Evans, D. A. D. International water cycle and the coevolution of the Earth’s inside and floor surroundings. Philos. Trans. R. Soc. A 375, 20150393 (2017).
Google Scholar
Maurice, M. et al. Onset of solid-state mantle convection and mixing throughout magma ocean solidification. J. Geophys. Res. Planet. 122, 577–598 (2017).
Google Scholar
Miyazaki, Y. & Korenaga, J. On the timescale of magma ocean solidification and its chemical penalties: 2. Compositional differentiation below crystal accumulation and matrix compaction. J. Geophys. Res. Strong Earth 124, 3399–3419 (2019).
Google Scholar
Clean, J. G. & Brooker, R. A. In Critiques in Mineralogy and Geochemistry. Quantity 30: Volatiles in Magmas (eds Carrol, M. R. & Holloway, J. R.) 157–186 (Mineralogical Society of America, 1994).
Abe, Y. In Evolution of the Earth and Planets (eds Takahashi, E. et al.) 41–54 (AGU, 1993).
Hirth, G. & Kohlstedt, D. L. Water within the oceanic higher mantle: implications for rheology, soften extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).
Google Scholar
Jain, C., Korenaga, J. & Karato, S.-i International evaluation of experimental knowledge on the rheology of olivine aggregates. J. Geophys. Res. Strong Earth 124, 310–334 (2019).
Google Scholar
Korenaga, J. Thermal evolution with a hydrating mantle and the initiation of plate tectonics within the early Earth. J. Geophys. Res. 116, B12403 (2011).
Google Scholar
Korenaga, J. Plate tectonics and floor surroundings: position of the oceanic higher mantle. Earth Sci. Rev. 205, 103185 (2020).
Zahnle, Okay. et al. Emergence of a liveable planet. Area Sci. Rev. 129, 35–78 (2007).
Google Scholar
Korenaga, J. Energetics of mantle convection and the destiny of fossil warmth. Geophys. Res. Lett. 30, 1437 (2003).
Google Scholar
Bradley, D. C. Passive margins via earth historical past. Earth Sci. Rev. 91, 1–26 (2008).
Google Scholar
Herzberg, C., Condie, Okay. & Korenaga, J. Thermal historical past of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).
Google Scholar
Pehrsson, S. J., Eglington, B. M., Evans, D. A., Huston, D. & Reddy, S. M. Metallogeny and its hyperlink to orogenic fashion through the Nuna supercontinent cycle. Geol. Soc. Spec. Publ. 424, 83–94 (2016).
Google Scholar
Plesa, A.-C., Tosi, N. & Breuer, D. Can a fractionally crystallized magma ocean clarify the thermo-chemical evolution of Mars? Earth Planet. Sci. Lett. 403, 225–235 (2014).
Google Scholar
Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W. & Kress, V. C. III The pMELTS: A revision of MELTS for improved calculation of part relations and main component partitioning associated to partial melting of the mantle to three GPa. Geochem. Geophys. Geosyst. 3, 1–35 (2002).
Gualda, G. A., Ghiorso, M. S., Lemons, R. V. & Carley, T. L. Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic programs. J. Petrol. 53, 875–890 (2012).
Google Scholar
Korenaga, J. In Archean Geodynamics and Environments (eds Benn, Okay. et al.) 7–32 (AGU, 2006).
Davies, G. F. On the emergence of plate tectonics. Geology 20, 963–966 (1992).
Google Scholar
Korenaga, J. Scaling of plate tectonic convection with pseudoplastic rheology. J. Geophys. Res. 115, B11405 (2010).
Google Scholar
Diamond, L. W. & Akinfiev, N. N. Solubility of CO2 in water from −1.5 to 100 °C and from 0.1 to 100 MPa: analysis of literature knowledge and thermodynamic modelling. Fluid Part Equilib. 208, 265–290 (2003).
Google Scholar
Alt, J. C. & Teagle, D. A. The uptake of carbon throughout alteration of ocean crust. Geochim. Cosmochim. Acta 63, 1527–1535 (1999).
Google Scholar
Sleep, N. H., Meibom, A., Fridriksson, T., Coleman, R. G. & Chicken, D. Okay. H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl Acad. Sci. 101, 12818–12823 (2004).
Google Scholar
Schulte, M., Blake, D., Hoehler, T. & McCollom, T. Serpentinization and its implications for all times on the early Earth and Mars. Astrobiology 6, 364–376 (2006).
Google Scholar
Lambert, J. B., Gurusamy-Thangavelu, S. A. & Ma, Okay. The silicate-mediated formose response: bottom-up synthesis of sugar silicates. Science 327, 984–986 (2010).
Google Scholar
Davies, G. F. Gravitational depletion of the early Earth’s higher mantle and the viability of early plate tectonics. Earth Planet. Sci. Lett. 243, 376–382 (2006).
Google Scholar
Zahnle, Okay. J., Kasting, J. F. & Pollack, J. B. Evolution of a steam ambiance throughout Earth’s accretion. Icarus 74, 62–97 (1988).
Google Scholar
Dullien, F. A. L. Porous Media: Fluid Transport and Pore Construction 2nd edn (Educational, 1992).
Zahnle, Okay. J., Lupu, R., Dobrovolskis, A. & Sleep, N. H. The tethered Moon. Earth Planet. Sci. Lett. 427, 74–82 (2015).
Google Scholar
Trønnes, R. G. & Frost, D. J. Peridotite melting and mineral-melt partitioning of main and minor parts at 22–24.5 GPa. Earth Planet. Sci. Lett. 197, 117–131 (2002).
Google Scholar
Corgne, A., Liebske, C., Wooden, B. J., Rubie, D. C. & Frost, D. J. Silicate perovskite-melt partitioning of hint parts and geochemical signature of a deep perovskitic reservoir. Geochim. Cosmochim. Acta 69, 485–496 (2005).
Google Scholar
Parsons, B. Causes and penalties of the relation between space and age of the ocean flooring. J. Geophys. Res. 87, 289–302 (1982).
Google Scholar
Zhang, G., Mei, S. & Track, M. Impact of water on the dislocation creep of enstatite aggregates at 300 MPa. Geophys. Res. Lett. 47, e2019GL085895 (2020).
Google Scholar
Aubaud, C., Hauri, E. H. & Hirschmann, M. M. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys. Res. Lett. 31, L20611 (2004).
Google Scholar
de Capitani, C. & Petrakakis, Okay. The computation of equilibrium assemblage diagrams with Theriak/Domino software program. Am. Mineral. 95, 1006–1016 (2010).
Google Scholar
McKenzie, D. The technology and compaction of partially molten rock. J. Petrol. 25, 713–765 (1984).
Google Scholar
Christensen, U. R. Thermal evolution fashions for the Earth. J. Geophys. Res. 90, 2995–3007 (1985).
Google Scholar
Korenaga, J. Thermal cracking and the deep hydration of oceanic lithosphere: A key to the technology of plate tectonics? J. Geophys. Res. 112, B05408 (2007).
Google Scholar
Tackley, P. J. In Treatise on Geophysics: Quantity 7: Mantle Dynamics 2nd edn (ed. Schubert G.) 521–585 (Elsevier, 2015).
Nakajima, S., Hayashi, Y.-Y. & Abe, Y. A research on the “runaway greenhouse impact” with a one-dimensional radiative–convective equilibrium mannequin. J. Atmos. Sci. 49, 2256–2266 (1992).
Google Scholar
Johnson, S. S., Mischna, M. A., Grove, T. L. & Zuber, M. T. Sulfur-induced greenhouse warming on early Mars. J. Geophys. Res. Planet. 113, E08005 (2008).
Google Scholar
Abe, Y. & Matsui, T. The formation of an impact-generated H2O ambiance and its implications for the early thermal historical past of the Earth. J. Geophys. Res. Suppl. 90, C545–C559 (1985).
Google Scholar
Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s inside. Earth Planet. Sci. Lett. 298, 1–13 (2010).
Google Scholar
Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, principally comes up. Proc. Natl Acad. Sci. 112, E3997–E4006 (2015).
Google Scholar
Sleep, N. H., Zahnle, Okay. & Neuhoff, P. S. Initiation of clement floor circumstances on the earliest Earth. Proc. Natl Acad. Sci. 98, 3666–3672 (2001).
Google Scholar
Peterson, M. N. A. Calcite: charges of dissolution in a vertical profile within the central Pacific. Science 154, 1542–1544 (1966).
Google Scholar
Andersson, A. J. In Treatise on Geochemistry. Quantity 8: The Oceans and Marine Geochemistry 2nd edn (eds Holland, H. D. & Turekian, Okay.) 519–542 (Elsevier, 2014).
Kelemen, P. B. et al. Charges and mechanisms of mineral carbonation in peridotite: pure processes and recipes for enhanced, in situ CO2 seize and storage. Annu. Rev. Earth Planet. Sci. 39, 545–576 (2011).
Google Scholar
Syracuse, E. M., van Keken, P. E. & Abers, G. A. The worldwide vary of subduction zone thermal fashions. Phys. Earth Planet. Inter. 183, 73–90 (2010).
Google Scholar
Dasgupta, R., Hirschmann, M. M. & Withers, A. C. Deep international biking of carbon constrained by the solidus of anhydrous, carbonated eclogite below higher mantle circumstances. Earth Planet. Sci. Lett. 227, 73–85 (2004).
Google Scholar
Korenaga, J. On the extent of mantle hydration attributable to plate bending. Earth Planet. Sci. Lett. 457, 1–9 (2017).
Google Scholar
Miller, N. C., Lizarralde, D., Collins, J. A., Holbrook, W. S. & Van Avendonk, H. J. Restricted mantle hydration by bending faults on the center America trench. J. Geophys. Res. Strong Earth 126, e2020JB020982 (2021).
Google Scholar
Miyazaki, Y. & Korenaga, J. Results of chemistry on vertical mud movement in early protoplanetary disks. Astrophys. J. 849, 41 (2017).
Google Scholar
Wirth, E. A. & Korenaga, J. Small-scale convection within the subduction zone mantle wedge. Earth Planet. Sci. Lett. 357–358, 111–118 (2012).
Google Scholar
Lyubetskaya, T. & Korenaga, J. Chemical composition of Earth’s primitive mantle and its variance: 1. Technique and outcomes. J. Geophys. Res. 112, B03211 (2007).
Google Scholar
Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J.-G. The imply composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013).
Google Scholar