A repeating fast radio burst source in a globular cluster


  • Petroff, E., Hessels, J. W. T. & Lorimer, D. R. Quick radio bursts. Astron. Astrophys. Rev. 27, 4 (2019).

    ADS 

    Google Scholar 

  • Spitler, L. G. et al. A repeating quick radio burst. Nature 531, 202–205 (2016).

    ADS 
    CAS 

    Google Scholar 

  • The CHIME/FRB Collaboration. The primary CHIME/FRB quick radio burst catalog. Astrophys. J. Suppl. Ser. 257, 59 (2021).

    ADS 

    Google Scholar 

  • Margalit, B. & Metzger, B. D. A concordance image of FRB 121102 as a flaring magnetar embedded in a magnetized ion–electron wind nebula. Astrophys. J. Lett. 868, 4 (2018).

    ADS 

    Google Scholar 

  • The CHIME/FRB Collaboration. A shiny millisecond-duration radio burst from a Galactic magnetar. Nature 587, 54–58 (2020).

    ADS 

    Google Scholar 

  • Bhardwaj, M. et al. A close-by repeating quick radio burst within the course of M81. Astrophys. J. Lett. 910, 18 (2021).

    ADS 

    Google Scholar 

  • Margalit, B., Berger, E. & Metzger, B. D. Quick radio bursts from magnetars born in binary neutron star mergers and accretion induced collapse. Astrophys. J. 886, 110 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Freedman, W. L. et al. The Hubble Area Telescope Extragalactic Distance Scale Key Venture. I. The invention of cepheids and a brand new distance to M81. Astrophys. J. 427, 628–655 (1994).

    ADS 

    Google Scholar 

  • Lazarus, P. et al. Prospects for high-precision pulsar timing with the brand new Effelsberg PSRIX backend. Mon. Not. R. Astron. Soc. 458, 868–880 (2016).

    ADS 

    Google Scholar 

  • Nimmo, Ok. et al. Burst timescales and luminosities hyperlink younger pulsars and quick radio bursts. Nat. Astron., within the press (2022).

  • Keimpema, A. et al. The SFXC software program correlator for very lengthy baseline interferometry: algorithms and implementation. Exp. Astron. 39, 259–279 (2015).

    ADS 

    Google Scholar 

  • Charlot, P. et al. The third realization of the Worldwide Celestial Reference Body by very lengthy baseline interferometry. Astron. Astrophys. 644, A159 (2020).

    CAS 

    Google Scholar 

  • Perelmuter, J.-M., Brodie, J. P. & Huchra, J. P. Kinematics and metallicity of 25 globular clusters in M81. Astron. J. 110, 620–627 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Perelmuter, J.-M. & Racine, R. The globular cluster system of M81. Astron. J. 109, 1055–1070 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Moffat, A. F. J. A theoretical investigation of focal stellar pictures within the photographic emulsion and software to photographic photometry. Astron. Astrophys. 3, 455–461 (1969).

    ADS 

    Google Scholar 

  • Gaia Collaboration. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Google Scholar 

  • Gaia Collaboration. Gaia Early Information Launch 3: abstract of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

    Google Scholar 

  • Harris, W. E., Harris, G. L. H. & Alessi, M. A catalog of globular cluster methods: what determines the dimensions of a galaxy’s globular cluster inhabitants? Astrophys. J. 772, 82 (2013).

    ADS 

    Google Scholar 

  • Marcote, B. et al. A repeating quick radio burst supply localized to a close-by spiral galaxy. Nature 577, 190–194 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Marcote, B. et al. The repeating quick radio burst FRB 121102 as seen on milliarcsecond angular scales. Astrophys. J. Lett. 834, L8 (2017).

    ADS 

    Google Scholar 

  • Ajello, M. et al. The fourth catalog of lively galactic nuclei detected by the Fermi Giant Space Telescope. Astrophys. J. 892, 105 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Abdo, A. A. et al. Detection of gamma-ray emission from the starburst galaxies M82 and NGC 253 with the Giant Space Telescope on Fermi. Astrophys. J. Lett. 709, L152–L157 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Hut, P. et al. Binaries in globular clusters. Publ. Astron. Soc. Pac. 104, 981 (1992).

    ADS 

    Google Scholar 

  • Pooley, D. et al. Dynamical formation of shut binary methods in globular clusters. Astrophys. J. Lett. 591, L131–L134 (2003).

    ADS 

    Google Scholar 

  • Verbunt, F. Binary evolution and neutron stars in globular clusters. In New Horizons in Globular Cluster Astronomy: Proceedings of a Convention Held at Università di Padova, Padova, Italy 24–28 June, 2002 (eds Piotto, G. et al.) 245–254 (Astronomical Society of the Pacific, 2003).

  • Wang, B. & Liu, D. The formation of neutron star methods by accretion-induced collapse in white-dwarf binaries. Res. Astron. Astrophys. 20, 135 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Giacomazzo, B. & Perna, R. Formation of steady magnetars from binary neutron star mergers. Astrophys. J. Lett. 771, L26 (2013).

    ADS 

    Google Scholar 

  • Schwab, J., Quataert, E. & Kasen, D. The evolution and destiny of super-Chandrasekhar mass white dwarf merger remnants. Mon. Not. R. Astron. Soc. 463, 3461–3475 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Zhong, S.-Q. & Dai, Z.-G. Magnetars from neutron star–white dwarf mergers: software to quick radio bursts. Astrophys. J. 893, 9 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Prager, B. J. et al. Utilizing long-term millisecond pulsar timing to acquire bodily traits of the bulge globular cluster Terzan 5. Astrophys. J. 845, 148 (2017).

    ADS 

    Google Scholar 

  • Mottez, F. & Zarka, P. Radio emissions from pulsar companions: a refutable clarification for galactic transients and quick radio bursts. Astron. Astrophys. 569, A86 (2014).

    ADS 

    Google Scholar 

  • Mottez, F., Zarka, P. & Voisin, G. Repeating quick radio bursts attributable to small our bodies orbiting a pulsar or a magnetar. Astron. Astrophys. 644, A145 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Ablimit, I. & Li, X.-D. Formation of binary millisecond pulsars by accretion-induced collapse of white dwarfs beneath wind-driven evolution. Astrophys. J. 800, 98 (2015).

    ADS 

    Google Scholar 

  • Ye, C. S., Kremer, Ok., Chatterjee, S., Rodriguez, C. L. & Rasio, F. A. Millisecond pulsars and black holes in globular clusters. Astrophys. J. 877, 122 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Heinke, C. O. et al. Evaluation of the quiescent low-mass X-ray binary inhabitants in Galactic globular clusters. Astrophys. J. 598, 501–515 (2003).

    ADS 
    CAS 

    Google Scholar 

  • Sridhar, N. et al. Periodic quick radio bursts from luminous X-ray binaries. Astrophys. J. 917, 13 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Kaaret, P., Feng, H. & Roberts, T. P. Ultraluminous X-ray sources. Annu. Rev. Astron. Astrophys. 55, 303–341 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Bachetti, M. et al. An ultraluminous X-ray supply powered by an accreting neutron star. Nature 514, 202–204 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Webb, N. et al. Radio detections throughout two state transitions of the intermediate-mass black gap HLX-1. Science 337, 554–556 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dage, Ok. C. et al. X-ray spectroscopy of newly recognized ULXs related to M87’s globular cluster inhabitants. Mon. Not. R. Astron. Soc. 497, 596–608 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Chatterjee, S. et al. A direct localization of a quick radio burst and its host. Nature 541, 58–61 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Ravi, V. et al. The host galaxy and protracted radio counterpart of FRB 20201124A. Preprint at https://arxiv.org/abs/2106.09710 (2021).

  • Bassa, C. G. et al. FRB 121102 is coincident with a star-forming area in its host galaxy. Astrophys. J. Lett. 843, L8 (2017).

    ADS 

    Google Scholar 

  • Tendulkar, S. P. et al. The 60 laptop setting of FRB 20180916B. Astrophys. J. Lett. 908, L12 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Piro, L. et al. The quick radio burst FRB 20201124A in a star-forming area: constraints to the progenitor and multiwavelength counterparts. Astron. Astrophys. 656, L15 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Fong, W.-f et al. Chronicling the host galaxy properties of the outstanding repeating FRB 20201124A. Astrophys. J. Lett. 919, L23 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Remazeilles, M., Dickinson, C., Banday, A. J., Bigot-Sazy, M. A. & Ghosh, T. An improved source-subtracted and destriped 408-MHz all-sky map. Mon. Not. R. Astron. Soc. 451, 4311–4327 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Reich, P. & Reich, W. Spectral index variations of the galactic radio continuum emission : proof for a galactic wind. Astron. Astrophys. 196, 211–226 (1988).

    ADS 

    Google Scholar 

  • Mather, J. C. et al. Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument. Astrophys. J. 420, 439–444 (1994).

    ADS 

    Google Scholar 

  • Whitney, A. et al. VLBI information interchange format (VDIF). In Sixth Worldwide VLBI Service for Geodesy and Astronomy. Proceedings from the 2010 Normal Assembly (eds Navarro, R. et al.) 192–196 (NASA, 2010).

  • Whitney, A. The Mark 5B VLBI information system. In Proc. seventh European VLBI Community Symp. on VLBI Scientific Analysis and Know-how (eds Bachiller, R et al.) 251–252 (EVN, 2004).

  • Kirsten, F. et al. Detection of two shiny radio bursts from magnetar SGR 1935 + 2154. Nat. Astron. 5, 414–422 (2021).

    ADS 

    Google Scholar 

  • Agarwal, D., Aggarwal, Ok., Burke-Spolaor, S., Lorimer, D. R. & Garver-Daniels, N. FETCH: a deep-learning based mostly classifier for quick transient classification. Mon. Not. R. Astron. Soc. 497, 1661–1674 (2020).

    ADS 

    Google Scholar 

  • Ransom, S. M. New Search Strategies for Binary Pulsars. PhD thesis, Harvard Univ. 2001).

  • Ransom, S. PRESTO: PulsaR Exploration and Search Toolkit. Astrophysics Supply Code Library http://ascl.web/1107.017 (2011).

  • Michilli, D. et al. Single-pulse classifier for the LOFAR Tied-Array All-sky Survey. Mon. Not. R. Astron. Soc. 480, 3457–3467 (2018).

    ADS 

    Google Scholar 

  • Greisen, E. W. AIPS, the VLA, and the VLBA. In Data Dealing with in Astronomy – Historic Vistas (ed. Heck, A.) 109–125 (Kluwer Educational, 2003).

  • Shepherd, M. C., Pearson, T. J. & Taylor, G. B. DIFMAP: an interactive program for synthesis imaging. Bull. Am. Astron. Soc. 26, 987–989 (1994).

    ADS 

    Google Scholar 

  • Regulation, C. J. et al. realfast: real-time, commensal quick transient surveys with the Very Giant Array. Astrophys. J. Suppl. Ser. 236, 8 (2018).

    ADS 

    Google Scholar 

  • Polisensky, E. et al. Exploring the transient radio sky with VLITE: early outcomes. Astrophys. J. 832, 60 (2016).

    ADS 

    Google Scholar 

  • Clarke, T. E. et al. Commensal low frequency observing on the NRAO VLA: VLITE standing and future plans. In Proc. SPIE 9906: Floor-based and Airborne Telescopes VI (eds Corridor, H. J. et al.) 99065B (SPIE, 2016).

  • Bethapudi, S. et al. The primary quick radio burst detected with VLITE-Quick. Res. Not. Am. Astron. Soc. 5, 46 (2021).

    ADS 

    Google Scholar 

  • Cotton, W. D. Obit: a improvement setting for astronomical algorithms. Publ. Astron. Soc. Pac. 120, 439–448 (2008).

    ADS 

    Google Scholar 

  • Offringa, A. R. et al. WSCLEAN: an implementation of a quick, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 444, 606–619 (2014).

    ADS 

    Google Scholar 

  • Miyazaki, S. et al. Hyper Suprime-Cam. In Proc. SPIE 8446: Floor-based and Airborne Instrumentation for Astronomy IV (eds McLean, I. S. et al.) 84460Z (SPIE, 2012).

  • Bosch, J. et al. The Hyper Suprime-Cam software program pipeline. Publ. Astron. Soc. Pac. 70, S5 (2018).

    Google Scholar 

  • Flewelling, H. A. et al. The Pan-STARRS1 database and information merchandise. Astrophys. J. Suppl. Ser. 251, 7 (2020).

    ADS 

    Google Scholar 

  • Garmire, G. P. et al. Superior CCD imaging spectrometer (ACIS) instrument on the Chandra X-ray Observatory. In Proc. SPIE 4851: X-ray and Gamma-ray Telescopes and Devices for Astronomy (eds Truemper, J. E. & Tananbaum, H. D.) 28–44 (SPIE, 2003).

  • Fruscione, A. et al. CIAO: Chandra’s information evaluation system. In Proc. SPIE 6270: Observatory Operations: Methods, Processes, and Techniques (eds Silva, D. R. & Doxsey, R. E.) 62701V (2006).

  • Kraft, R. P., Burrows, D. N. & Nousek, J. A. Willpower of confidence limits for experiments with low numbers of counts. Astrophys. J. 374, 344–355 (1991).

    ADS 

    Google Scholar 

  • Ballet, J., Burnett, T. H., Digel, S. W. & Lott, B. Fermi Giant Space Telescope Fourth Supply Catalog. Preprint at https://arxiv.org/abs/2005.11208 (2020).

  • Abdo, A. A. et al. A inhabitants of gamma-ray emitting globular clusters seen with the Fermi Giant Space Telescope. Astron. Astrophys. 524, A75 (2010).

    Google Scholar 

  • Hessels, J. W. T. et al. FRB 121102 bursts present complicated time-frequency construction. Astrophys. J. Lett. 876, L23 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Kirsten, F., Vlemmings, W., Campbell, R. M., Kramer, M. & Chatterjee, S. Revisiting the delivery places of pulsars B1929+10, B2020+28, and B2021+51. Astron. Astrophys. 577, A111 (2015).

    ADS 

    Google Scholar 

  • Condon, J. J. et al. Resolving the radio supply background: deeper understanding by confusion. Astrophys. J. 758, 23 (2012).

    ADS 

    Google Scholar 

  • Beck, R. et al. PS1-STRM: neural community supply classification and photometric redshift catalogue for PS1 3π DR1. Mon. Not. R. Astron. Soc. 500, 1633–1644 (2021).

    ADS 

    Google Scholar 

  • Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The noticed offset distribution of gamma-ray bursts from their host galaxies: a strong clue to the character of the progenitors. Astrophys. J. 123, 1111–1148 (2002).

    Google Scholar 

  • Leja, J., Johnson, B. D., Conroy, C., van Dokkum, P. G. & Byler, N. Deriving bodily properties from broadband photometry with Prospector: description of the mannequin and an illustration of its accuracy utilizing 129 galaxies within the native Universe. Astrophys. J. 837, 170 (2017).

    ADS 

    Google Scholar 

  • Johnson, B. D., Leja, J. L., Conroy, C. & Speagle, J. S. Prospector: stellar inhabitants inference from spectra and SEDs. Astrophysics Supply Code Library http://ascl.web/1905.025 (2019).

  • Alam, S. et al. The eleventh and twelfth information releases of the Sloan Digital Sky Survey: closing information from SDSS-III. Astrophys. J. Suppl. Ser. 219, 12 (2015).

    ADS 

    Google Scholar 

  • Simha, V. et al. Parametrising star formation histories. Preprint at https://arxiv.org/abs/1404.0402 (2014).

  • Carnall, A. C. et al. How one can measure galaxy star formation histories. I. Parametric fashions. Astrophys. J. 873, 44 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Draine, B. T. & Li, A. Infrared emission from interstellar mud. IV. The silicate–graphite–PAH mannequin within the post-Spitzer period. Astrophys. J. 657, 810–837 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Bertelli, G., Bressan, A., Chiosi, C., Fagotto, F. & Nasi, E. Theoretical isochrones from fashions with new radiative opacities. Astron. Astrophys. Suppl. Ser. 106, 275–302 (1994).

    ADS 

    Google Scholar 

  • Ma, J. et al. Steel abundance properties of M81 globular cluster system. Publ. Astron. Soc. Pac. 119, 1085–1092 (2007).

    ADS 

    Google Scholar 

  • Kremer, Ok. et al. White dwarf subsystems in core-collapsed globular clusters. Astrophys. J. 917, 28 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Ye, C. S. et al. On the speed of neutron star binary mergers from globular clusters. Astrophys. J. Lett. 888, L10 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Boyles, J. et al. Younger radio pulsars in Galactic globular clusters. Astrophys. J. 742, 51 (2011).

    ADS 

    Google Scholar 

  • Hessels, J. et al. Pulsars in globular clusters with the SKA. In Advancing Astrophysics with the Sq. Kilometre Array (AASKA14) 47 (2015).

  • Lyne, A. G., Manchester, R. N. & D’Amico, N. PSR B1745-20 and younger pulsars in globular clusters. Astrophys. J. Lett. 460, L41 (1996).

    ADS 

    Google Scholar 

  • Macquart, J. P. et al. A census of baryons within the Universe from localized quick radio bursts. Nature 581, 391–395 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cordes, J. M. & Lazio, T. J. W. NE2001.I. A brand new mannequin for the Galactic distribution of free electrons and its fluctuations. Preprint at https://arxiv.org/abs/astro-ph/0207156 (2002).

  • Yao, J. M., Manchester, R. N. & Wang, N. A brand new electron-density mannequin for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).

    ADS 

    Google Scholar 

  • Keating, L. C. & Pen, U.-L. Exploring the dispersion measure of the Milky Manner halo. Mon. Not. R. Astron. Soc. 496, L106–L110 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Yamasaki, S. & Totani, T. The Galactic halo contribution to the dispersion measure of extragalactic quick radio bursts. Astrophys. J. 888, 105 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Prochaska, J. X. & Zheng, Y. Probing Galactic haloes with quick radio bursts. Mon. Not. R. Astron. Soc. 485, 648–665 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Hutschenreuter, S. et al. The Galactic Faraday rotation sky 2020. Astron. Astrophys. 657, A43 (2022).

    Google Scholar 

  • The CHIME/FRB Collaboration. CHIME/FRB discovery of eight new repeating quick radio burst sources. Astrophys. J. Lett. 885, L24 (2019).

    ADS 

    Google Scholar 

  • Michilli, D. et al. An excessive magneto-ionic setting related to the quick radio burst supply FRB 121102. Nature 553, 182–185 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Hobbs, G., Manchester, R., Teoh, A. & Hobbs, M. The ATNF Pulsar Catalog. In IAU Symp. No. 218: Younger Neutron Stars and Their Environments (eds Camilo, F. & Gaensler, B. M.) 139–140 (Astronomical Society of the Pacific, 2004).

  • Karachentsev, I. D. The native group and different neighboring galaxy teams. Astron. J. 129, 178–188 (2005).

    ADS 
    CAS 

    Google Scholar 

  • Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of mud infrared emission to be used in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

    ADS 

    Google Scholar 

  • Leave a Reply