A persistent ultraviolet outflow from an accreting neutron star binary transient


  • Ponti, G. et al. Ubiquitous equatorial accretion disc winds in black gap smooth states. MNRAS 422, L11–L15 (2012).

    CAS 
    Article 

    Google Scholar 

  • Homan, J. et al. Proof for simultaneous jets and disk winds in luminous low-mass x-ray binaries. Astrophys. J. 830, L5 (2016).

    Article 

    Google Scholar 

  • Muñoz-Darias, T. et al. The changing-look optical wind of the flaring x-ray transient Swift J1858.6-0814. Astrophys. J. 893, L19 (2020).

    Article 

    Google Scholar 

  • Lengthy, Ok. S. & Knigge, C. Modeling the spectral signatures of accretion disk winds: a brand new Monte Carlo method. Astrophys. J. 579, 725–740 (2002).

    CAS 
    Article 

    Google Scholar 

  • Waters, T., Proga, D. & Dannen, R. Multiphase AGN winds from x-ray-irradiated disk atmospheres. Astrophys. J. 914, 62 (2021).

    Article 

    Google Scholar 

  • Higginbottom, N. et al. Thermal and radiation driving can produce observable disc winds in hard-state X-ray binaries. MNRAS 492, 5271–5279 (2020).

    Article 

    Google Scholar 

  • Tetarenko, B. E., Lasota, J. P., Heinke, C. O., Dubus, G. & Sivakoff, G. R. Sturdy disk winds traced all through outbursts in black-hole X-ray binaries. Nature 554, 69–72 (2018).

    CAS 
    Article 

    Google Scholar 

  • Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004).

    CAS 
    Article 

    Google Scholar 

  • Krimm, H. A. et al. Swift studies the detection of a brand new galactic transient supply Swift J1858.6-0814. The Astronomer’s Telegram 12151, 1 (2018).

    Google Scholar 

  • Brilliant, J. et al. AMI-LA radio observations of the galactic X-ray transient Swift J1858.6-0814. The Astronomer’s Telegram 12184, 1 (2018).

    Google Scholar 

  • Vasilopoulos, G., Bailyn, C. & Milburn, J. Swift J1858.6-0814: Localization and variability of the optical counterpart. The Astronomer’s Telegram 12164, 1 (2018).

    Google Scholar 

  • Kennea, J. A. & Krimm, H. A. Swift J1858.6-0814: Swift XRT and UVOT localization. The Astronomer’s Telegram 12160, 1 (2018).

    Google Scholar 

  • Buisson, D. J. Ok. et al. Discovery of thermonuclear (Kind I) X-ray bursts within the X-ray binary Swift J1858.6-0814 noticed with NICER and NuSTAR. MNRAS 499, 793–803 (2020).

    CAS 
    Article 

    Google Scholar 

  • Buisson, D. J. Ok. et al. Dips and eclipses within the X-ray binary Swift J1858.6-0814 noticed with NICER. MNRAS 503, 5600–5610 (2021).

    Article 

    Google Scholar 

  • Ludlam, R. M. et al. Preliminary NICER remark of the brand new X-ray transient Swift J1858.6-0814. The Astronomer’s Telegram 12158, 1 (2018).

    Google Scholar 

  • Motta, S. E. et al. Swift observations of V404 Cyg through the 2015 outburst: X-ray outflows from super-Eddington accretion. MNRAS 471, 1797–1818 (2017).

    CAS 
    Article 

    Google Scholar 

  • Hare, J. et al. NuSTAR observations of the transient galactic black gap binary candidate Swift J1858.6–0814: a brand new sibling of V404 Cyg and V4641 Sgr? Astrophys. J. 890, 57 (2020).

    CAS 
    Article 

    Google Scholar 

  • van den Eijnden, J. et al. The variable radio counterpart of Swift J1858.6-0814. MNRAS 496, 4127–4140 (2020).

    Article 

    Google Scholar 

  • Begelman, M. C., McKee, C. F. & Shields, G. A. Compton heated winds and coronae above accretion disks. I. Dynamics. Astrophys. J. 271, 70–88 (1983).

    CAS 
    Article 

    Google Scholar 

  • Carried out, C., Gierliński, M. & Kubota, A. Modelling the behaviour of accretion flows in X-ray binaries. Every thing you all the time needed to learn about accretion however have been afraid to ask. Astron. Astrophys. Rev. 15, 1–66 (2007).

    Article 

    Google Scholar 

  • Higginbottom, N. & Proga, D. Coronae and winds from irradiated disks in x-ray binaries. Astrophys. J. 807, 107 (2015).

    Article 

    Google Scholar 

  • Buisson, D. J. Ok. et al. Smooth X-ray emission traces within the X-ray binary Swift J1858.6-0814 noticed with XMM-Newton Reflection Grating Spectrometer: disc ambiance or wind? MNRAS 498, 68–76 (2020).

    CAS 
    Article 

    Google Scholar 

  • Muñoz-Darias, T. et al. Regulation of black-hole accretion by a disk wind throughout a violent outburst of V404 Cygni. Nature 534, 75–78 (2016).

    Article 

    Google Scholar 

  • Shields, G. A., McKee, C. F., Lin, D. N. C. & Begelman, M. C. Compton-heated winds and coronae above accretion disks. III. Instability and oscillations. Astrophys. J. 306, 90–106 (1986).

    Article 

    Google Scholar 

  • Ganguly, S. & Proga, D. On the wind-driven rest cycle in accretion disks. Astrophys. J. 890, 54 (2020).

    Article 

    Google Scholar 

  • Ioannou, Z. et al. Understanding the LMXB X2127+119 in M 15. II. The UV information. Astron. Astrophys. 399, 211–218 (2003).

    CAS 
    Article 

    Google Scholar 

  • Neilsen, J. et al. A NICER view of a extremely absorbed flare in GRS 1915+105. Astrophys. J. 902, 152 (2020).

    CAS 
    Article 

    Google Scholar 

  • Dubus, G., Carried out, C., Tetarenko, B. E. & Hameury, J.-M. The influence of thermal winds on the outburst lightcurves of black gap X-ray binaries. Astron. Astrophys. 632, A40 (2019).

    Article 

    Google Scholar 

  • Luketic, S., Proga, D., Kallman, T. R., Raymond, J. C. & Miller, J. M. On the properties of thermal disk winds in x-ray transient sources: a case examine of GRO J1655-40. Astrophys. J. 719, 515–522 (2010).

    CAS 
    Article 

    Google Scholar 

  • Carried out, C., Tomaru, R. & Takahashi, T. Thermal winds in stellar mass black gap and neutron star binary techniques. MNRAS 473, 838–848 (2018).

    CAS 
    Article 

    Google Scholar 

  • Charles, P. et al. Scorching, dense He II outflows through the 2017 outburst of the X-ray transient Swift J1357.2-0933. MNRAS 489, L47–L52 (2019).

    Google Scholar 

  • Inexperienced, J. C. et al. The Cosmic Origins Spectrograph. Astrophys. J. 744, 60 (2012).

    Article 

    Google Scholar 

  • Eracleous, M. & Horne, Ok. The speedy magnetic propeller within the cataclysmic variable AE Aquarii. Astrophys. J. 471, 427–446 (1996).

    CAS 
    Article 

    Google Scholar 

  • Vernet, J. et al. X-shooter, the brand new large band intermediate decision spectrograph on the ESO Very Giant Telescope. Astron. Astrophys. 536, A105 (2011).

    Article 

    Google Scholar 

  • Cepa, J. et al. In Optical and IR Telescope Instrumentation and Detectors Vol. 4008 of Society of Photograph-Optical Instrumentation Engineers (SPIE) Convention Sequence (eds Iye, M. & Moorwood, A. F.) 623–631 (SPIE, 2000); https://doi.org/10.1117/12.395520

  • Freudling, W. et al. Automated information discount workflows for astronomy. The ESO Reflex surroundings. Astron. Astrophys. 559, A96 (2013).

    Article 

    Google Scholar 

  • Drew, J. E. Inclination and orbital-phase-dependent resonance line-profile calculations utilized to cataclysmic variable winds. MNRAS 224, 595–632 (1987).

    CAS 
    Article 

    Google Scholar 

  • Carried out, C. In Accretion Processes in Astrophysics (eds González Martínez-País, I., Shahbaz, T. & Casares Velázquez, J.) 184–227 (Cambridge Univ. Press, 2014).

  • Woods, D. T., Klein, R. I., Castor, J. I., McKee, C. F. & Bell, J. B. X-ray–heated coronae and winds from accretion disks: time-dependent two-dimensional hydrodynamics with adaptive mesh refinement. Astrophys. J. 461, 767–804 (1996).

    Article 

    Google Scholar 

  • Proga, D. & Kallman, T. R. On the function of the ultraviolet and x-ray radiation in driving a disk wind in x-ray binaries. Astrophys. J. 565, 455–470 (2002).

    Article 

    Google Scholar 

  • Frank, J., King, A. & Raine, D. J. Accretion Energy in Astrophysics third edn (Cambridge Univ. Press, 2002).

  • Ashman, Ok. M., Fowl, C. M. & Zepf, S. E. Detecting bimodality in astrometrical datasets. Astron. J. 108, 2348–2361 (1994).

    Article 

    Google Scholar 

  • Leave a Reply