A global timing mechanism regulates cell-type-specific wiring programmes


  • Südhof, T. C. In the direction of an understanding of synapse formation. Neuron 100, 276–293 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zipursky, S. L. & Sanes, J. R. Chemoaffinity revisited: dscams, protocadherins, and neural circuit meeting. Cell 143, 343–353 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Hassan, B. A. & Hiesinger, P. R. Past molecular codes: easy guidelines to wire complicated brains. Cell 163, 285–291 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. Classifying Drosophila olfactory projection neuron subtypes by single-cell RNA sequencing. Cell 171, 1206–1220 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Özel, M. N. et al. Neuronal range and convergence in a visible system developmental atlas. Nature 589, 88–95 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hobert, O. Terminal selectors of neuronal id. Curr. Prime. Devel. Biol. 116, 455–475 (2016).

    CAS 

    Google Scholar 

  • Hong, W. & Luo, L. Genetic management of wiring specificity within the fly olfactory system. Genetics 196, 17–29 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dasen, J. S. & Jessell, T. M. Hox networks and the origins of motor neuron range. Curr. Prime. Devel. Biol. 88, 169–200 (2009).

    CAS 

    Google Scholar 

  • Larkin, A. et al. FlyBase: updates to the Drosophila melanogaster data base. Nucleic Acids Res. 49, D899–D907 (2020).

    PubMed Central 

    Google Scholar 

  • Scheffer, L. Ok. et al. A connectome and evaluation of the grownup Drosophila central mind. eLife 9, e57443 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kurmangaliyev, Y. Z., Yoo, J., Valdes-Aleman, J., Sanfilippo, P. & Zipursky, S. L. Transcriptional packages of circuit meeting within the Drosophila visible system. Neuron 108, 1045–1057 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reilly, M. B., Cros, C., Varol, E., Yemini, E. & Hobert, O. Distinctive homeobox codes delineate all of the neuron lessons of C. elegans. Nature 584, 595–601 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Truman, J. W., Talbot, W. S., Fahrbach, S. E. & Hogness, D. S. Ecdysone receptor expression within the CNS correlates with stage-specific responses to ecdysteroids throughout Drosophila and Manduca growth. Improvement 120, 219–234 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Riddiford, L. M., Cherbas, P. & Truman, J. W. Ecdysone receptors and their organic actions. Vitam. Horm. 60, 1–73 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Agawa, Y. et al. Drosophila Blimp-1 is a transient transcriptional repressor that controls timing of the ecdysone-induced developmental pathway. Mol. Cell. Biol. 27, 8739–8747 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pak, M. D. & Gilbert, L. I. A developmental evaluation of ecdysteroids through the metamorphosis of extit Drosophila melanogaster. J. Liq. Chromatogr. 10, 2591–2611 (1987).

    CAS 

    Google Scholar 

  • Rabinovich, D., Yaniv, S. P., Alyagor, I. & Schuldiner, O. Nitric oxide as a switching mechanism between axon degeneration and regrowth throughout developmental transforming. Cell 164, 170–182 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shlyueva, D. et al. Hormone-responsive enhancer-activity maps reveal predictive motifs, oblique repression, and concentrating on of closed chromatin. Mol. Cell 54, 180–192 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Cherbas, L., Hu, X., Zhimulev, I., Belyaeva, E. & Cherbas, P. EcR isoforms in Drosophila: testing tissue-specific necessities by focused blockade and rescue. Improvement 130, 271–284 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Xu, C. et al. Management of synaptic specificity by establishing a relative choice for synaptic companions. Neuron 103, 865–877 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nern, A., Zhu, Y. & Zipursky, S. L. Native N-cadherin interactions mediate distinct steps within the concentrating on of lamina neurons. Neuron 58, 34–41 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fisher, Y. E. et al. FlpStop, a software for conditional gene management in Drosophila. eLife 6, e22279 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bender, M., Imam, F. B., Talbot, W. S., Ganetzky, B. & Hogness, D. S. Drosophila ecdysone receptor mutations reveal purposeful variations amongst receptor isoforms. Cell 91, 777–788 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Yao, T. P. et al. Useful ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366, 476–479 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schwabe, T., Borycz, J. A., Meinertzhagen, I. A. & Clandinin, T. R. Differential adhesion determines the group of synaptic fascicles within the Drosophila visible system. Curr. Biol. 24, 1304–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • White, Ok. P., Hurban, P., Watanabe, T. & Hogness, D. S. Coordination of Drosophila metamorphosis by two ecdysone-induced nuclear receptors. Science 276, 114–117 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Takemura, S. et al. Synaptic circuits and their variations inside totally different columns within the visible system of Drosophila. Proc. Natl Acad. Sci. USA 112, 13711–13716 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, L. et al. Ig superfamily ligand and receptor pairs expressed in synaptic companions in Drosophila. Cell 163, 1756–1769 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, C. W. & Peng, H. B. The perform of mitochondria in presynaptic growth on the neuromuscular junction. Mol. Biol. Cell 19, 150–158 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rangaraju, V., Lauterbach, M. & Schuman, E. M. Spatially secure mitochondrial compartments gas native translation throughout plasticity. Cell 176, 73–84 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Gowrisankaran, S. & Milosevic, I. Regulation of synaptic vesicle acidification on the neuronal synapse. IUBMB Life 72, 568–576 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Özel, M. N., Langen, M., Hassan, B. A. & Hiesinger, P. R. Filopodial dynamics and progress cone stabilization in Drosophila visible circuit growth. eLife 4, e10721 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng, J. et al. Drosophila Fezf coordinates laminar-specific connectivity by cell-intrinsic and cell-extrinsic mechanisms. eLife 7, e33962 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Akin, O. & Zipursky, S. L. Frazzled promotes progress cone attachment on the supply of a Netrin gradient within the Drosophila visible system. eLife 5, e20762 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moffatt, N. S. C., Bruinsma, E., Uhl, C., Obermann, W. M. J. & Toft, D. Function of the cochaperone Tpr2 in Hsp90 chaperoning. Biochemistry 47, 8203–8213 (2008).

    PubMed 

    Google Scholar 

  • Suzuki, M., Suzuki, H., Sugimoto, Y. & Sugiyama, Y. ABCG2 transports sulfated conjugates of steroids and xenobiotics. J. Biol. Chem. 278, 22644–22649 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Alyagor, I. et al. Combining developmental and perturbation-Seq uncovers transcriptional modules orchestrating neuronal transforming. Dev. Cell 47, 38–52 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uyehara, C. M. & McKay, D. J. Direct and widespread function for the nuclear receptor EcR in mediating the response to ecdysone in Drosophila. Proc. Natl Acad. Sci. USA 116, 9893–9902 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Syed, M. H., Mark, B. & Doe, C. Q. Steroid hormone induction of temporal gene expression in Drosophila mind neuroblasts generates neuronal and glial range. eLife 6, e26287 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Altmann, C. R. & Brivanlou, A. H. Neural patterning within the vertebrate embryo. Int. Rev. Cytol. 203, 447–482 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Briscoe, J. & Small, S. Morphogen guidelines: design rules of gradient-mediated embryo patterning. Improvement 142, 3996–4009 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaunt, S. J. Hox cluster genes and collinearities all through the tree of animal life. Int. J. Dev. Biol. 62, 673–683 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Miranda, A. & Sousa, N. Maternal hormonal milieu affect on fetal mind growth. Mind Behav. 8, e00920 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Akin, O. & Zipursky, S. L. Exercise regulates mind growth within the fly. Curr. Opin. Genet. Dev. 65, 8–13 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ting, C.-Y. et al. Photoreceptor-derived activin promotes dendritic termination and restricts the receptive fields of first-order interneurons in Drosophila. Neuron 81, 830–846 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mizumoto, Ok. & Shen, Ok. Two Wnts instruct topographic synaptic innervation in C. elegans. Cell Rep. 5, 389–396 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Umemori, H., Linhoff, M. W., Ornitz, D. M. & Sanes, J. R. FGF22 and its shut family are presynaptic organizing molecules within the mammalian mind. Cell 118, 257–270 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Picelli, S. et al. Full-length RNA-seq from single cells utilizing Good-seq2. Nat. Protoc. 9, 171–181 (2014).

    CAS 

    Google Scholar 

  • Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for quick and delicate epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome place. Nat. Strategies 10, 1213–1218 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ambrosini, G., Groux, R. & Bucher, P. PWMScan: a quick software for scanning total genomes with a position-specific weight matrix. Bioinformatics 34, 2483–2484 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic knowledge throughout totally different situations, applied sciences, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, S. et al. Interactions between the Ig-superfamily proteins DIP-α and Dpr6/10 regulate meeting of neural circuits. Neuron 100, 1369–1384 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santiago, I. J. et al. Drosophila Fezf capabilities as a transcriptional repressor to direct layer-specific synaptic connectivity within the fly visible system. Proc. Natl Acad. Sci USA 118, e2025530118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published.